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Typical/module lifetimes were less than 1 year but

are now estzmated to be greater than 10 years.
(Ten-year warranties are now available.)

Technology advancement in crystalline silicon solar ceils

and modules (non-concentrating).

Union Carbide Corporation (UCC) funded the now

operational silicon refinement production plant with

1200 MT/year capacity DQE/FSA-sponsored efforts
were prominent in the UCC process research

and development.

The automated machine interconnects solar cells

arid pl_('e,s them for module assembly. The second

gener_tio_ machine made by Kulicke and Soffa was

cost shared by Westinghouse Corporation and DOE/FSA
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More technology advancements of the

cooperative industry/university/
DOE/FSA efforts are shown on the

inside back cover. Use of modules in

photovoltaic power systems are shown
on the outside back cover.

A Block I module (fabricated in I975), held in front of four

Block V modules, represents the progress of an 1l-year effort

The modules, designed and manufactured by industry to FSA

specifications and evaluated by FSA, rapidly evolved during

the series of module purchases by DOE/FSA.



5101-289

Flat-Plate

Solar Array Project

DQE/JPL-1012-125

Distribution Category UC-63b

Electricity from Photovoltaic Solar Cells

Flat-Plate Solar Array Project
Final Report

Volume II1: Silicon Sheet: Wafers and Ribbons

A. Briglio
K. Dumas

M. Leipold
A. Morrison

11 Years of Progress

October 1986

Prepared for

U.S. Department of Energy

Through an Agreement with

National Aeronautics and Space Administration

by

Jet Propulsion Laboratory

California Institute of Technology

Pasadena, California

Project Managed

by the

Jet Propulsion Laboratory

for the

U.S. Department of Energy's

National Photovoltaics Program

JPL Publication 86-31



Final Report Organization

This FSA Final Report (JPL Publication 86-31,5101-289, DOE/JPL 1012-125, October 1986) is composed of eight

volumes, consisting of an Executive Summary and seven technology reports:

Volume I: Executive Summary.

Volume I1: Silicon Material.

Volume II1: Silicon Sheet: Wafers and Ribbons

Volume IV: High-Efficiency Solar Cells.

Volume V: Process Development.

Volume VI: Engineering Sciences and Reliability.

Volume VII: Module Encapsulation.

Volume VIII: Project Analysis and Integration.

Two supplemental reports included in the final report package are:

FSA Project: 10 Years of Progress, JPL Document 400-279, 5101-279, October 1985.

Summary of FSA Project Documentation: Abstracts of Published Documents, 1975 to 1986, JPL Publication 82-79
(Revision 1), 5101-221, DOE/JPL-101 2-76, September 1986.

Upon request, this FSA Final Report (JPL Publication 86-31 ) and the two supplemental reports (JPL Document
400-279 and JPL Publication 82-79) are individually available in print from:

National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Road
Springfield, VA 22161



Abstract

The Flat-Plate Solar Array (FSA) Project, funded by the U.S. Government and managed by the Jet Propulsion
Laboratory, was formed in 1975 to develop the module/array technology needed to attain widespread terrestrial use
of photovoltaics by 1985. To accomplish this, the FSA Project established and managed an Industry, University, and
Federal Government Team to perform the needed research and development.

The primary objective of the Silicon Sheet Task of the FSA Project was the development of one or more low-cost
technologies for producing silicon sheet suitable for processing into cost-competitive solar cells. Silicon sheet refers
to high-purity crystalline silicon of size and thickness for fabrication into solar cells.

The Task effort began with state-of-the-art sheet technologies and then solicited and supported any new silicon
sheet alternatives that had the potential to achieve the Project goals.

A total of 48 contracts were awarded that covered work in the areas of ingot growth and casting, wafering, ribbon
growth, other sheet technologies, and programs of supportive research. Periodic reviews of each sheet technology
were held, assessing the technical progress and the long-range potential. Technologies that failed to achieve their
promise, or seemed to have lower probabilities for success in comparison with others, were dropped. A series of
workshops was initiated to assess the state of the art, to provide insights into problems remaining to be addressed,
and to support technology transfer.

The Task made and fostered significant improvements in silicon sheet including processing of both ingot and
ribbon technologies. An additional important outcome was the vastly improved understanding of the characteristics
associated with high-quality sheet, and the control of the parameters required for higher efficiency solar cells.
Although significant sheet cost reductions were made, the technology advancements required to meet the Task cost
goals were not achieved.
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Foreword

Throughout U.S. history, the Nation's main source of energy has changed from wood to coal to petroleum. It is
inevitable that changes wilt continue as fossil fuels are depleted. Within a lifetime, it is expected that most U.S. energy
will come from a variety of sources, including renewable energy sources, instead of from a single type of fuel. More
than 30% of the energy consumed in the United States is used for the generation of electricity. The consumption of
electricity is increasing at a faster rate than the use of other energy forms and this trend is expected to continue.

Photovoltaics, a promising way to generate electricity, is expected to provide significant amounts of power in years to
come. It uses solar cells to generate electricity directly from sunlight, cleanly and reliably, without moving parts.

Photovoltaic (PV) power systems are simple, flexible, modular, and adaptable to many different applications in an
almost infinite number of sizes and in diverse environments. Although photovottaics is a proven technology that is
cost-effective for hundreds of small applications, it is not yet cost-effective for large-scale utility use in the United

States. For widespread economical use, the cost of generating power with photovoltaics must continue to be
decreased by reducing the initial PV system cost, by increasing efficiency (reduction of land requirements), and by

increasing the operational lifetime of the PV systems.

In the early 1970s, the pressures of the increasing demand for electrical power, combined with the uncertainty of
fuel sources and ever-increasing prices for petroleum, led the US. Government to initiate a terrestrial PV research and
development (R&D) project. The objective was to reduce the cost of manufacturing solar cells and modules. This
effort, assigned to the Jet Propulsion Laboratory, evolved from more than a decade-and-a-half of spacecraft PV power-
system experience and from recommendations of a conference on Solar Photovoltaic Energy held in 1973 at Cherry
Hill, New Jersey.

This Project, originally called the Low-Cost Solar Array Project, but later known as the Flat-Plate Solar Array (FSA)
Project, was based upon crystalline-silicon technology as developed for the space program. During the 1960s and
1970s, it had been demonstrated that photovoltaics was a dependable electrical power source for spacecraft. In this
time interval, solar-cell quality and performance improved while the costs decreased. However, in 1975 the costs were
still much too high for widespread use on Earth. It was necessary to reduce the manufacturing costs of solar cells by a
factor of approximately 100 if they were to be a practical, widely used terrestrial power source.

The FSA Project was initiated to meet specific cost, efficiency, production capacity, and lifetime goals by R&D in all

phases of flat-plate module (non-concentrating) technology, from solar-ceil silicon material purification through verifica-
tion of module reliability and performance.

The FSA Project was phased out at the end of September 1986.
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FSA Project Summary

The Flat-Plate Solar Array (FSA) Project, a Government-sponsored photovoltaic (PV) project, was initiated in
January 1975 with the intent to stimulate the development of PV systems for economically competitive, large-
scale terrestrial use. The Project's goal was to develop, by 1985, the technology needed to produce PV modules

with 10% energy conversion efficiency, a 20-year lifetime, and a selling price of $0.50/Wp (in 1975 dollars). The
key achievement needed was cost reduction in the manufacture of solar cells and modules.

As manager, the Jet Propulsion Laboratory organized the Project to meet the stated goals through research and
development (R&D)in all phases of flat-plate module technology, ranging from silicon-material refinement through
verification of module reliability and performance. The Project sponsored parallel technology efforts with periodic pro-
gress reviews. Module manufacturing cost analyses were developed that permitted cost-goal allocations to be made
for each technology. Economic analyses, performed periodically, permitted assessment of each technical option's
potential for meeting the Project goal and of the Project's progress toward the National goal. Only the most promising
options were continued. Most funds were used to sponsor R&D in private organizations and universities, and led to

an effective Federal Government-University-Industry Team that cooperated to achieve rapid advancement in PV
technology.

Excellent technical progress led to a growing participation by the private sector. By 1981, effective energy conser-
vation, a leveling of energy prices, and decreased Government emphasis had altered the economic perspective for
photovoltaics. The U.S. Department of Energy's (DOE's) National Photovoltaics Program was redirected to longer-
range research efforts that the private sector avoided because of higher risk and longer payoff time. Thus, FSA con-
centrated its efforts on overcoming specific critical technological barriers to high efficiency, long life, reliability, and
low-cost manufacturing.

To be competitive for use in utility central-station generation plants in the 1990s, it is estimated that the price of
PV-generated power will need to be $0.17/kWh (1985 dollars). This price is the basis for a DOE Five-Year Photo-
voltaics Research Plan involving both increased cell efficiency and module lifetime. Area-related costs for PV utility
plants are significant enough that flat-plate module efficiencies must be raised to between 1 3 and 17%, and module
life extended to 30 years. Crystalline silicon, research solar cells (non-concentrating) have been fabricated with more
than 20% efficiency. A full-size experimental 15% efficient module also has been fabricated. It is calculated that a
multimegawatt PV power plant using large-volume production modules that incorporate the latest crystalline silicon
technology could produce power for about $027/kWh (1985 dollars). It is believed that $0.17/kWh (1985 dollars) is
achievable, but only with a renewed and dedicated effort.

Government-sponsored efforts, plus private investments, have resulted in a small, but growing terrestrial PV in-
dustry with economically competitive products for stand-alone PV power systems. A few megawatt-sized, utility-
connected, PV installations, made possible by Government sponsorship and tax incentives, have demonstrated the
technical feasibility and excellent reliability of large, multimegawatt PV power-generation plants using crystalline sili-
con solar cells.

Major FSA Project Accomplishments

• Established basic technologies for all aspects of the manufacture of nonconcentrating, crystalline-silicon PV
modules and arrays for terrestrial use. Module durability also has been evaluated. These resulted in:

• Reducing PV module prices by a factor of 15 from $75/Wp (1985 dollars) to $5/Wp (1985 dollars).
• Increasing module efficiencies from 5 to 6% in 1975 to more than 15% in 1985.

• Stimulating industry to establish 10-year warranties on production modules. There were no warranties in 1975.

• Establishing a new, low-cost high-purity silicon feedstock-material refinement process.

• Establishing knowledge and capabilities for PV module/array engineering/design and evaluation.

• Establishing long-life PV module encapsulation systems.

• Devising manufacturing and life-cycle cost economic analyses.

• Transferred technologies to the private sector by interactive activities in research, development, and field
demonstrations. These included 256 R&D contracts, comprehensive module development and evaluation efforts,
26 Project Integration Meetings, 10 research forums, presentations at hundreds of technical meetings, and ad-
visory efforts to industry on specific technical problems.

• Stimulated the establishment of a viable commercial PV industry in the United States,
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Silicon Sheet Summary

Silicon sheet is the primary component of a crystalline silicon photovoltaic (PV) module. The quality and shape of
the sheet, as well as the process by which it is produced, influence the fabrication, costs, and efficiencies of solar
cells and modules. Because the cost of silicon sheet dominates the overall cost of a PV module, the production of
high-quality silicon sheet must be based on low-cost growth processes. The primary objective of the Silicon Sheet
Task in the Flat-Plate Solar Array Project was to develop these processes.

The direction of the development has been toward both the reduced use of silicon and other consumable
materials and the achievement of high throughput (meter2/h) and high sheet quality (higher device efficiency). These
goals were to be attained within the bounds of an initial add-on price goal of $18/m2. This price goal, which did not
include the cost of silicon, depends upon the specific process used and its effect on the overall price of the module.
Taken into account were the potential trade-offs between solar cell efficiency, sheet production throughput, material
use, and other indirect costs associated with the sheet growth process.

As with many other technology development activities, the Task faced a major trade-off between high-risk, high-
return opportunities, and those that were more secure and potentially less rewarding. In order of increasing risk, as

perceived in the early years of the Project, most of the silicon sheet technology processes supported by the Task can
be grouped into the following three options:

Option 1: Ingot and wafering technology.

• Advanced Czochralski (Cz) ingot growth (Kayex, Siltec, Varian, Texas Instruments).

• Ingot casting (Crystal Systems, Solarex).

• Internal diameter (ID) saw wafering (Siltec, Silicon Technology).

• Multiple-blade wafering (Varian, P.R. Hoffman).

• Multiple-wire wafering (Crystal Systems, Solarex).

Option 2: Shaped ribbon growth.

• Edge-defined film-fed growth (EFG) (Mobil Solar).

• Dendritic-web growth (Westinghouse).

• Inverted Stepanov process (RCA).

• Ribbon-to-ribbon growth (Motorola).

• Low-angle silicon sheet growth (Energy Materials Corp.).

Option 3: Silicon coating on low-cost substrates.

• Silicon-on-ceramic dip coating (Honeywell).

• Chemical vapor deposition (GE, Rockwell, RCA).

• Liquid-phase epitaxy (Astrosystems).

Vacuum casting of silicon wafers was supported at ARCO Solar and at SRI International. Advanced development
of a commercial and proprietary polycrystalline silicon casting technique was supported separately at Solarex by the
U.S. Department of Energy (DOE), and technical direction was provided by the Task.

To develop these technology options, the Jet Propulsion Laboratory (JPL) awarded contracts to industries and
universities. Specific research was aimed at understanding the behavior of low-cost silicon sheet based on the
characterization of its structural, chemical, and electronic properties. Although this research was performed by JPL
and others, the primary role of JPL was to plan, manage, and coordinate Task activities.
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TheTaskwasplannedtoproceedin thefollowingphases:feasibilityresearchanddevelopment,advanceddevel-
opment,prototyping,andproductiondevelopment.Becauseofthegreatcomplexity,variety,andnoveltyofsome
sheettechnologyoptions,theratesofprogressvariedamongtheoptions.Consequently,onlythoseoptionsthat
evolvedmostrapidlyandofferedthegreatestpromiseforhigh-qualityandtow-costsheetreceivedcontinuingProject
support.Newprocessoptionswereconsideredandsupportedastheybecameavailable.

Inadditiontostudiesof sheettechnologydevelopment,supportingresearchalsowasconductedintheareasof:

• Interactionofvariousmaterialswithmoltensilicon.

• Developmentofimprovedrefractorymaterialstobeusedincontactwithmoltensilicon.

* Determinationofthesourcesandimplementationofthecontrolofstressesandstrainsencounteredduring
thegrowthofsiliconribbons.ThiswasamajorfocusoftheTaskattheconclusionof theProject.

TheredirectionoftheDOENationalPhotovoltaicsProgramin late1981shiftedemphasistolonger-term,high-
riskresearch.Thisessentially led to the termination of the prototype and production phases of the original concept,
and to the end of the support for nearly all the process option developments except the dendritic-web effort. The latter
was judged most promising because of its quality and low cost. None of the technical efforts involving the highest risk
(Option 3) were brought to the point of commercial feasibility. This was especially true in view of the need for
increased module efficiency that emerged after 1980. Because of the large funding reduction in 1981 and the Project
termination in 1986, many promising technical activities are incomplete. Some technical activities have continued with
private sponsorship, but at reduced levels of effort. The diverse technical aspects of the Task work are reviewed and
summarized in this report.

In spite of the limitations mentioned above, there were many major accomplishment, including:

• Growth of a 150 kg single crystal, Cz ingot (15-cm diameter) from a single crucible at a throughput rate
of 2.2 kg/h.

• Casting of a 34 x 34 x 17 cm shaped ingot (35 kg) by the heat exchange method.

• Demonstration of ID sawing of a 15 cm Cz ingot at 17 wafers per centimeter of length of the ingot (0.69 m2/kg).

• Demonstration of wire sawing of a 10 x 10 cm cast ingot at 25 wafers per centimeter of length of ingot (1 m2/kg).

• High throughput growth of EFG ribbons (40 cm2/min; 10 cm wide at 4 cm/min).

• Simultaneous growth of multiple EFG ribbons (five ribbons, each 5 cm wide; three ribbons, each 10 cm wide).

• High throughput growth of high-quality dendritic-web ribbons (13 cm2/min for short ribbon lengths).

• Demonstration of 8 h dendritic-web ribbon growth at constant melt level.

* Identification of mechanical stress and deformation as a primary limitation to the rapid growth of high-quality
silicon ribbons.

• Significant progress in understanding and control of thermal stress/strain effects in high-speed ribbon
growth.

• Understanding and modeling of the origin of defects in low-cost silicon sheet and the effects of these defects
on electronic transport behavior.

• Development of a ceramic composition (Multite) whose thermal expansion precisely matches silicon over the
temperature range from room temperature to the melting point of silicon.

• The first detailed and comprehensive study of the interactions of various refractory materials with
semiconductor-grade silicon.

• The generation of fracture data for silicon and its application to growth and processing of silicon sheet.

• Economic advancements were implemented by the various industrial contractors to reduce their product
cost. Detailed information on the specifics of these implementations and their effects of actual cost

are proprietary.
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TheTaskeffortsledtocommercializationofoneribbonoptionandextensiveprogresstowardthecommercializa-
tionof another.ItalsocontributedtothecommercializationofingotcastingandtotheadvancementoftheCzgrowth
technique.WorkwiththeCzgrowthtechniquenowcontinuesundernumerousprivatedevelopmentactivities.The
Taskalsoaidedunderstandinganddevelopmentofwaferingtechnology,thecrystallizationprocess,andtheeffectsof
thecrystallizationprocessonelectronicpropertiesandsolarcellquality.Materialinteractionswithmoltensiliconare
nowbetterunderstood,asaresomeofthelimitationsongrowthratesandthetrade-offsbetweenproductionrates
andquality.
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SECTION I

Introduction

A. BACKGROUND

Despite its simple appearance and uncomplicated
structure (Figure 1), a crystalline-silicon solar cell is a
sophisticated semiconductor device. Solar cells that

convert sunlight into electricity with high efficiency
require high-quality silicon substrates with the follow-
ing precisely tailored physical and electronic proper-
ties: low density of structural defects, high purity, long
minority-carrier diffusion lengths, and high uniformity.
Unlike most semiconductor devices, the cost of a solar
cell is highly dependent on the cost of the silicon sheet
substrate on which it is fabricated. The solar cell is an

area-dependent device, i.e., large solar cell areas are
required to produce large amounts of power. To
achieve low manufacturing costs, the silicon sheet
growth process 1 must be inexpensive and yet not
compromise the material quality or its properties with
regard to subsequent processability. Processability
requires high mechanical strength, low residual stress,
and uniform, standard-shaped, flat wafers. The major
cost drivers for silicon sheet growth include costs of
consumables, throughput rate, labor, and the cost of
capital equipment (Appendix A).

In January 1975, the Flat-Plate Solar Array (FSA)
Project (then called the Low-Cost Silicon Solar Array
Project) was established at the Jet Propulsion Labora-
tory (JPL) as part of a National Photovoltaics Energy
Conversion Program. The objective of this Project was
to achieve a major cost reduction in silicon solar array
prices by 1986. The FSA Project approach consisted
of technology development, industry involvement,
commercialization, and market stimulation.

When the FSA Project started, only two silicon
sheet types were available in the marketplace: the
wafers were sliced from either float-zone (FZ) or
Czochralski (Cz) single-crystal cylindrical ingots. These
high-cost materials (typically $4 to $5 per wafer) were
of a quality (purity and crystallinity) adequate for use
by the growing semiconductor industry and for photo-
voltaics (PV).

The standard semiconductor industry process for
silicon wafer manufacture in 1975 included Cz ingot
growth, centerless grinding, trimming, wafering by
internal diameter (ID) saws, etching, polishing, and
cleaning. These steps were expensive, low-yield,
labor-intensive, and resulted in an expensive substrate
material. This material cost was acceptable when
spread out among the many individual semiconductor
devices obtained from a single wafer, but was
prohibitive for low-cost terrestrial PV applications.
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Figure 1. Crystalline Silicon Solar Cell

Cz wafers also were used for space-qualified solar
cells in which reliability and performance were the
issue, not cost.

Neither of these materials, however, seemed to
have a high probability for meeting the low-cost crite-
rion of the new Project. For that reason, alternative sili-
con sheet processes were sought that had potential
for meeting the Task's add-on cost goals. At that time,
in the materials community, several innovative sheet

growth processes were in the conceptual or early
developmental stages. These included ingot growth
processes employing directional solidification tech-
niques, and methods to grow silicon in sheet form
directly from the melt. The direct sheet-growth
processes avoided the costly wafering step altogether.
Although the ingot processes yielded a product that
required subsequent wafering, they seemed to have
the advantage of low process costs.

This report summarizes the 11-year-long activities
of the Silicon Sheet Task. The general goal of the Task
consistently has been better silicon sheet at lower cost.
Specific Task objectives and approaches evolved sub-
stantially because of changes in funding level, redirection
from the U.S. Department of Energy (DOE), and
response to the results of continuing analyses concerning
cost and technology trade--offs (Reference 1).

B. INITIAL GOALS AND OBJECTIVES

FSA Project price goals for solar arrays were

established on the basis of rated power ($/Wp) and of
area of arrays ($/m2). These price goals were trans-
lated into various technology goals in terms of
throughput, efficiency, material consumption, and
yields appropriate for each process step (see
Appendix A).

1 In this report, the term "sheet" is used to mean silicon in a form suitable for processing into solar cells regardless of

whether it was grown in ingot form and subsequently sliced or grown directly from the melt to the desired thickness,
i.e., ribbons.



Bythetimeof thefirstTaskIntegrationMeetingin
January1976,the1985FSAsiliconsheetgoalsfor
price,quality,andthroughputhadbeenestablished.
Thegoalswere:

(1) A value-addedcostof < $18/m2forlarge-area
siliconsheet.

(2) Siliconsheetcapableofarrayfabricationwith
> 10%energy-conversionefficiency.

(3) Automatedsheetproductioncapabilityof
>5 x 106m2/year.

Theseengineeringandproductiongoalswere
designedtomeettheProject's$0.50/Wp(1975dollars)
goal.Thegoalswerecontingentuponscalingupfor
commercialization(moremachinesperoperator,better
processautomation,lowerconsumablescosts,etc.).
Atthisstage,thefocusoftheNationalProgramand
theProjectwasondevelopingprocesstechnologies
thatshowedtechnicalandeconomicfeasibility,more
thanonthefundamentaltechnicalissuessuchas
developinganunderstandingoftheinfluenceofgrowth-
process-relateddefectsondeviceperformance.

C. EARLYAPPROACH/IMPLEMENTATIONPLAN

TheTaskapproachandscheduleestablishedin
1975wastopursueevolvingtechnologiesinfour
phases:

(1) Proofof conceptandfeasibilitydemonstration
(FY76to FY77).

(2) Advanceddevelopment(FY78to FY80).

(3) Prototypeprocessdevelopment(FY79to
FY82).

(4) Scalingupofprocessesasatransitiontoauto-
matedprocessdevelopment(FY81toFY86).

Phase1wasto includeboththeoreticaland
experimentalevaluationofthefeasibilityofcandidate
processestoachievethetechnicalandcostgoalsof
theTask(developmentofgoalscommensuratewith
Projectcostgoals).

InPhase2,eachtechnologythathaddemon-
stratedtechnicalfeasibilitywastobeanalyzed,critical
barrierstosuccessfulprocessdevelopmentwereto
beidentifiedfordirectedR&Deffort,andtechnical
goalsweretobeassignedtoeachprocesscommen-
suratewithProject-derivedcostadd-ongoals.

Phase3,theTechnologyReadiness(TR)demon-
strationphase,wasplannedto encompassthedesign,
construction,development,andquasi-production
demonstrationof prototypemachines.TRdemonstra-
tionswereintendedto provideoperationandcostdata
tobecomparedagainst1985goals,andwouldbe
usedfortheselectionof processesforthefinalphase.

Phase4 wasintendedto betheoperationofa
pilotproductionfacilityconsistingofseveralmachines.
Thiswastodevelopanddemonstrateproduction
capabilitycommensuratewithProjectgoals.

At itsinception,theTaskelectedto supporta
parallel-pathtechnologydevelopmentprogram.It
wouldsupport,atleastthroughPhase1,allthose
technologiesperceivedashavingapotentialfor
achievingthetechnicalandeconomicgoalsofthe
Project.Theapproachincludedsupport,throughsub-
contracts,ofR&Dofsiliconcrystalgrowthmethods.It
alsoincludedin-housesiliconsheetcharacterization
andassessment,aswellascomplementarymaterial
andcrystalgrowthstudies.InJanuary1975,anindus-
trybriefingandplannedsolicitationwereannounced.
ByAugust,sourceselectionsfortheSiliconSheet
GrowthDevelopmentSubtaskwerepresented.A list
ofcontractorstotheProjectinJanuary1976isgiven
inTable1 A',.theoutsetoftheProject,a fewofthe
sheetgrowthmethodshadalreadybeenindevelop-
mentoroperationforsometime,whileotherswere
onlyconceptsThestatusofeachofthetechnologies
in 1976isgiveninReference2.

Table I F-SA Project R&D and Silicon Sheet
Growth Methods 1975 to 1977

Organization Method

Ribbon growth

University of South
Carolina Dendritic web

IBM Shaping capillary die

MobiI-Tyco EFG

RCA Inverted Stepanov

Motorola Ribbon-to-ribbon laser zone
melting

Vapor deposition

Rockwell CVD

Novel sheet growth

GE Floating substrate

Honeywell Dip coating

Crystal Systems Heat exchange ingot
casting

Ingot cutting

Varian

Crystal Systems

Breadknife sawing

Wire sawing



ThreemilestonesweredefinedbytheTaskto
measuretheprogressof technologydevelopmentof
thesesheettechnologiesagainsttheProjectgoalof
demonstratingTechnologyReadinessbyFY82(TR82),
Themilestoneswere:

(1) Simultaneousdemonstrationof performance
andproductivitygoalsassignedto eachpro-
cess,Eachprocesswasassignedindividual
goalsbasedonestimatedperformanceand
productivitypotentialsandthetrade-offeffect
ofthevariablesonperformanceagainst
Projectgoals.

(2) Completionofdesignandfabricationofa
prototypeExperimentalSheetGrowthUnit.

(3) Successfulcompletionofoperationofthe
GrowthUnitinapilotproductionmode.

Thetaskwasnotconstrainedtosupportonlythe
originalsubcontractorsor technologies.Evenassome
technologiesfailedtoachievetheirpromise,others
wereadded,atleasttothepointoffeasibilitydemon-
stration.TheCzprocess,forexample,wasaddedto
theprogramin1977.FourCzapproachesultimately
weresupported.Theoriginaltwowaferingoptions
wereexpandedto fourbeforewaferingtechnology
development(TD)wasdroppedaltogetherin1985.
Ultimately,theparallel-pathTDprogramincludedthree
ingotgrowthprocesses,fourwaferingprocesses,and
ninedirectsheetformationprocesses(Table2).All
technologiessupportedbytheTaskarereviewedin
thefollowingsections.

In1979,sixFSA-supportedtechnologieswere
identifiedascandidatesforTR82.Thesixrepresented
thethreemajorsiliconsheettechnologyoptionspur-
suedbytheTask:(1)ingottechnologyrepresentedby
theadvancedCzprocessandtheheatexchange
method(HEM),(2)supported-filmtechnologyrepre-
sentedbythesilicon-on-ceramic(SOC)process,and
(3)shaped-ribbontechnologyrepresentedbythe
edge-definedfilm-fedgrowth(EFG)processandthe
dendriticwebprocess.

Inadditiontotheseprimarystudiesofcrystalgrowth
andwafering,theTasksupportedandconductedparallel
technologicalstudiestosupporttheprimaryinvestiga-
tions.Thesetechnologicalstudiesinvolved:

(1) In-housedeterminationof theinteractionsof
moltensiliconwiththevariousmaterialsthat
wereanticipatedto beusedincontactwith
moltensilicon.

(2) In-houseinvestigationoftheeffectsof
structuraldefectsandtheirdistributionon
electronicpropertiesandcellperformance.

(3) Subcontracteddevelopmente#ortstooptimize
theperformancedeterminedbythein-house
investigationsofmechanicalbehaviorofsilicon
incrystallizationandthefinishedsheet.

Table 2. Total Parallel-Path Technology
Development Program for
Sificon Sheet *

Ingot Growth

Czochralski (Cz)
Heat exchange method (HEM)
Semicrystalline casting (SEMIX)

Wafering

Fixed abrasive internal diameter (ID)
Fixed abrasive multiple wire (FAST)
Free abrasive multiple wire
Free abrasive multiple blade

Direct Sheet Formation

Vacuum die casting
Ribbon-to-ribbon (RTR)
Dendritic web

Edge-supported pulling (ESP, ESR)
Shaped ribbon growth (EFG, CAST)
Low-angle silicon sheet (LASS)
Floating substrate
Silicon on ceramic (SOC)
Inverted Stepanov

Support Technologies

Die and container materials studies

Theoretical studies on heat flow, interface stability,
mechanical properties, stress and strain in
ribbon growth

Abrasion analysis in various chemical
environments

Development of analytical tools (moire pattern
Interferometric analysis of residual stress in
ribbons, etc.)

Miscellaneous

Deformation processing

*This work included both subcontracted and
in-house R&D efforts.

(4) Additional appropriate subcontracted and
in-house studies.

In 1981, the Task initiated a series of Project work-
shops and research forums beginning with the Low-Cost
Solar Array Wafering Workshop. The objectives of the

Wafering Workshop were to clarify and define the state
of the art of ingot wafering, to define the requirements for
future work, to solicit and explore innovative ideas, and
to stimulate a productive exchange of technology within
the technical community. The Workshop accomplished
these objectives. But major developments clearly were
needed to achieve the Project economic goals.



Thisapproachtoproblemsolvingandtechnology
transferwasfollowedbyothermajortechnicalwork-
shopsdealingwithgrowthandcharacterizationof
crystalsforsolarcellsaswellasacontinuingseriesof
mini-workshopsontheproblemofstressandstrainin
high-speedribbongrowthprocesses(Table3).

Table 3. Silicon Sheet Task Technical Workshops and
Research Forum *

Low-Cost Solar Array Wafering Workshop,
June 8-10, 1981, Phoenix, Arizona

Flat*Plate Solar Array Project Research Forum on
the High Speed Growth and Characterization of
Crystals for Solar Cells, July 25-27, 1983,
Port St. Lucie, Florida

Flat-Plate Solar Array Project Workshop on
Crystal Growth for High-Efficiency Silicon Solar
Cells, December 3-4, 1984, San Diego, California

*In addition to the above, four mini-workshops
were held on stress/strain in silicon ribbons.

D. PROJECT REDIRECTION

The first redirection came from DOE late in 1981.

It specifically supported a research thrust to address
the fundamental barriers to achieve the Task goals, in
contrast to emphasis on TD for commercialization. The
second redirection came in 1985 and redefined the sheet

performance goals to meet the new energy-conversion
efficiency requirement for utility-projected modules of 15
to 17% at air mass (AM) 1.5. The new specifications for
sheet suitable for fabrication into high-efficiency solar
cells were established by the Task to be 0.1 to 1 t]--cm,
zero-D (e.g., < 103 to 104 dislocations per square cm)

250- to 500-/_m minority carrier diffusion length, con-
trolled impurities (oxygen, nitrogen, carbon), processable
shape, and low residual stress. Ribbon stress problems
became apparent only when ribbons were grown wider
and faster. These remained the goals of the Task until its
phaseout at the end of FY 86.

The impact of the budget reductions and changes
in program emphasis included the phaseout of technol-

ogies perceived to be ready for commercialization (the
wafering and ingot TD programs),2 and the focusing of
research efforts and funding for the ribbon and support

technologies onto generic topics and critical elements

of specific sheet growth processes.

As part of its in-house research and test and verifi-
cation work, the Task at JPL had built up research
facilities during the first 6 years of the TD program.
Materials and device characterization, device process-

ing, and crystal growth laboratories already were in
place and operational in 1982 when the Project focus
was redirected. Thus, intensive research could be per-
formed at JPL addressing generic problems and topics
of critical importance to the successful development of
the sheet technologies.

A discontinuity occurred in 1982 when funding for
all technology options was substantially reduced. Not
only were the ingot and wafering processes dropped,
but the ribbon options also were narrowed. This
reduced funding and also reduced the probability of
technical success for the remaining processes.

In 1983. DOE issued its Five-Year Research Plan for

the National Photovoltaics Program ('Reference 3). The
plan cited the success of the U.S. Government/industry
partnership in the development of the ingot-based single-
crystal silicon technology on which the then emerging
PV industry was based. It reiterated the Federal role
"to undertake research activities with the potential for
achieving long-term benefits in areas that industry is
unlikely to pursue because of the costs and risks
involved." It further stated that "The Program, in
response to industry's need, is working to resolve the
critical problems which currently limit the improvement
of crystalline silicon technology." The goal, estab-
lished for the Task, was to "resolve generic impedi-
ments to improve ribbon growth speed and quality in
different environments." The goal was scheduled for
completion by the end of CY 85. The resources that

were made available to achieve this goal, however,
were considerably less than those estimated to be
required (Figures 2 and 3).

In February 1984, at the request of DOE, the FSA
Project issued a Crystalline Silicon Implementation
Plan to respond to the DOE's Five-Year Plan (see Refer-
ence 3). In the Implementation Plan, the Task goal is
unchanged from the goal stated in the Five-Year Plan.
The generic problems that must be understood better to
achieve successful ribbon growth TD are identified as
the problem of stress and strain in high-speed growth of
ribbons and the relationship between growth parameters
and solar cell performance.

2Wafering and ingot technologies were not yet ready to stand on their own to meet commercially the low-cost needs

of the PV community, Although several paths for possible R&D development in ingot wafering were identified at the
Workshop, no continued R&D then was supported by industry. The Defense Advanced Research Projects Agency
(DARPA) today is supporting an effort in fixed-abrasive slicing technique (FAST) development. The state of the art
in wafering and ingot technologies is virtually unchanged since 1982. The inability of the wafering technologies to
reach their goals by 1982 effectively prevented further consideration of the ingot technologies. The Cz ingot growth
process has advanced only incrementally since 1982. The FZ process which yields the highly perfect wafers on
which all devices with the highest reported efficiencies have been fabricated, still remains unexplored for low-cost
terrestrial PV application.
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Task

Because analyses by utilities were placing higher
performance requirements on the modules to enhance
the feasibility of central station photovoltaics (Refer-
ence 4), the potential device efficiencies of the candi-
date sheet technologies became important selection
criteria. In 1985, the Task objective in terms of silicon
perfection and properties was redefined because of the
high module-efficiency requirements (15 to 17% AM1 ),
projected by the Electric Power Research Institute
(EPRt) and JPL. Dendritic web ribbon became the
prime sheet candidate because of its crystalline per-
fection and, therefore, potential for fabrication into
high-efficiency devices. The Implementation Plan pro-
posed that dendritic web research continue to be

funded at Westinghouse. The goal was to demonstrate
a 15 cm2/min throughput rate of ribbon yielding

14.5% efficiency average cells by mid-FY 85. It also
was proposed that a second dendritic web contractor
be supported to accelerate the rate of development
and increase the probability of technical success;
interest was solicited in the industry without success.
JPL was chosen as the second contractor because of
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Figure 3. Funding History for Silicon Sheet
Technology (Flat-Plate Solar Array
Project Contracted Effort)

its demonstrated capability in the field of remote sens-
ing and its familiarity with dendritic web technology
and the Project. The purpose of the "Web Team,"
established at JPL, was to support the Westinghouse
effort and increase its probability of success. The
"Web Team" was independently to develop sensing
and control tools to be transferred to Westinghouse
when developed. The plan anticipated that growth-
process verification would be completed by the end of
FY 86, and that an Advanced Silicon Sheet Summary
Document would be issued by early FY 87. The
achievements of the Westinghouse and JPL teams are
summarized in Section IV.B.2.

Because these new requirements placed severe
constraints on most of the silicon sheet materials

under development, interest has been renewed in the
potential for high-quality Cz or FZ silicon wafers.

When Project wind-down activities were begun,
limited time and funding prevented substantive
changes in the approach or plan of the Task.





SECTION II

Ingot Technology

A. INTRODUCTION

At the inception of the Project and the Silicon
Sheet Task, the operational sheet technology was
ingot growth and wafering. Although mature and effec
tive for the semiconductor industry and then-existing
solar cell production, this combination of growth and
slicing was perceived to be too costly and wasteful of
purified silicon material. Initial FSA Project efforts
emphasized sheet preparation by direct growth of thin
silicon sheets, as indicated by Table 1. However,
continuing in-house analysis of costs of Cz crystal
growth suggested that ingot technology could meet
Project goals with the aid of numerous technical

advances, and that wafering technology (Section III)
could also reach the cost goals with technical
improvement.

Specifically, it was seen that the small-batch
processing limit on crystal growth could be challenged.
The production of multiple Cz ingots from a single
crucible and crystal-grower run and the growth of large
crystals at faster rates was considered. Beginning in
1977, four contractors (Kayex, Siltec, Texas Instruments,

and Varian) addressed these Cz-improvement options,
with varying approaches and degrees of success, as
described in Section ll.B.1.

Alternative ingot technologies to the Cz growth
method were also explored: the Heat Exchange Method
(HEM) of Crystal Systems Inc., and the Ubiquitous Crys-
tallization Process (UCP) of the Solarex Corp. (supported
under a cooperative agreement with DOE, with FSA
technical cognizance). The UCP effort also included
wafering activities, some described in Section ll.B.3 and

others as a part of the Wafering Section (see Section III).

Another alternative ingot technology in service at
the outset of the Project, FZ crystal growth, was
deliberately not selected for development support
because of a general perception of the limitations of
this process step and its products. Although of high
purity, and capable of being processed into high-
quality wafers and high-efficiency solar cells, FZ sili-
con wafers are soft (because of low oxygen content)
and limited to small diameter. Thus, both processability
and manufacturing cost are adversely affected.

In addition to wafering, several other FSA studies
supporting bulk crystal growth were performed. A
study of heat flow in Cz crystals was carried out by
investigators at Washington University at St. Louis.
Work relevant to molten silicon/container chemistry is
discussed in Section VI.B.1. Studies of the role of gas
environments on silicon crystal growth were a con-

sideration in a variety of programs, specifically includ-
ing those of EFG growth, Cz (Kayex), and materials
(University of Missouri).

At JPL, a small in-house program was supported
to produce specialized Cz crystals for research appli-
cations. Emphasis was placed on unusual crystal
orientations (such as < 110 >), controlled bi-crystals,
unusual dopants, and dopant levels.

The Cz growth TD effort was terminated in 1982
as part of the Project redirection. Since 1982, outside
of FSA, commercial Cz processes have been continu-

ously upgraded. Interest in continuous silicon ingot
growth presently is enjoying a resurgence. Numerous
totally automated pullers now are available in the

marketplace, 20-cm-diameter ingots are routinely
grown by silicon producers, and the introduction of
magnetic fields to inhibit melt convection has resulted

in more uniform, controlled-oxygen-content crystals.

B. IMPLEMENTATION

1. Czochralski Crystal Growth

The Cz method produces a cylindrical ingot of
single-crystal silicon by slowly withdrawing (pulling) a
silicon "seed" of the appropriate crystallographic
orientation from a pool of molten silicon in a quartz
crucible. In 1977, four research teams (Texas Instru-
ments, Varian, Siltec, and Kayex) were selected to
perform TD programs aimed at reducing the cost of
Cz-grown silicon ingot. Two major drivers of the cost
of Cz ingots were the cost of the quartz crucible and
the low throughput rate of the process (Reference 5).
Thus, the goals of the subcontracted programs included
the development of continuous growth processes (more
silicon crystals from a single crucible) and increased
process throughput rates.

a. Kayex Corp.: Continuous Czochralski
Growth. The approach taken by Kayex Corp. in 1977

was to modify existing commercial Kayex ingot-growth
equipment to pull multiple, batch-recharged, larger-
diameter crystals from a single crucible. The original
goals of the program included:

(1) Continuous growth of 100-kg ingots of single-
crystal silicon from one common container.

State of the art at that time was 25 kg from
one container.

(2) A growth rate of 20 cm/h instead of the then
available capacity of 5 cm/h.

(3) An ingot diameter of 10 cm (4 in.) as com-
pared to the 7.5-cm-diameter ingots then
available.

From October 1977 through April 1982, Kayex
performed a TD effort involving the continuous
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process scale-up (References 6, 7, and 8). The goals
evolved as the process developed and as Project
goals and DOE guidelines changed (Table 4). Late in
the effort, the work at Kayex included research on
more fundamental problems of Cz growth such as the

role of gas composition in the growth chamber. This
Cz TD effort, the most successful of the Cz work sup-

ported by the Project, resulted in the design and
commercial production of a new generation of auto-
mated, batch-rechargeable, 15.0-cm-diameter, silicon

ingot-growth systems.

From October 1,1977 through March 31, 1980,
"Continuous Czochralski Growth" was a two-phase
TD contract. The specific objective of Phase 1 was the

growth from a single crucible of a 100-kg single-crystal
ingot with a diameter of 10 cm or greater• The goal of
Phase 2 was the growth of a 150-kg, 1 5-cm-diameter,
single-crystal ingot from a single crucible. To achieve
these objectives, Kayex initiated a program of equip-
ment design and development, process R&D, charac-
terization, data analysis, and economic analysis.

The redesigned Kayex CG-1000 commercial
puller featured a 20-torr operating pressure with con-
tinuous argon purging, a flapper isolation valve
between the growth and upper chambers of the sys-
tem to allow ingot removal, a reseeding capability, a
recharging capability without cooldown of the crucible
and growth chamber, and recharge mechanisms for
both solid polycrystalline rod or lump material. Rede-

sign included scale-up (for both) from a 30-cm to a
35-cm (14-in) crucible, and incorporation of a bead-
chain pull mechanism. Two growth runs, each greater
than 150 kg, successfully were demonstrated• During
the performance period, six 25-kg ingots were pulled
from a single 35-cm crucible in the modified system
redesignated as CG-6000.

The process development effort included develop-
ment of multiple ingot growth from a single container,

Table 4. Goals of the Kayex Corp.

recharging of crucibles while at operating temperature,
and the growth of larger diameter ingots (10 and 15 cm)
from the larger crucibles. A significant effort also focused
on understanding the influence of the atmosphere of the

growth system on crystal quality. The multiple ingot
growth technique required successful development of
both the above hardware and the recharging technique.
For the recharge process, the lump recharge methods
prevailed because of problems experienced with the
solid rod recharge approach and the successful design
of a novel hopper for lump feed. A successful dopant
recharge system also was developed to maintain the
consistency of the electronic character of succeeding

ingots.

The scale-up to 10.0-, 12.5-, and 1 5.0-cm crystals
was economically motivated. Throughput, and therefore
cost, is extremely sensitive to ingot diameter, and
increase in ingot diameter is not limited by the more
fundamental barriers to high-speed linear growth.
Although the contract goal of a 20-cm/h linear growth
rate successfully was demonstrated for selected crystals
during the contract period, the maximum overall growth
rate observed during a 100-kg run was 8.7 cm/h.

The furnace-atmosphere study emphasized the
identification and elimination of sources of impurities

that could end up in the melt and result in deterioration
of ingot quality. The silicon material etching process, the
bake-out procedures for the graphite furnace compo-
nents, and other sources of volatile impurities were
reviewed and remedied. A residual gas analyzer (RGA)
was used to monitor the CO concentration (correlated

directly with SiO concentration) in the system atmo-
sphere during the growth runs. SiO and CO are believed
to be elements of an impurity transport couple ultimately
responsible for degradation of crystal quality. In a typical
growth run, the CO level rose dramatically during melt-
down, dropped during the melt-stabilization period, and

gradually increased during the growth period. The RGA
also detected air and water leaks in the system.

Czochralski Ingot-Growth Program

Parameter

Contract Contract Contract
954888 954888 Contract 955733

Octt977 Marl980 955270 Apr1982

Continuous growth total (kg)

Growth rate of length (cm/h)

Diameter (cm)

Ingot yield after growth and before
trimming (%)

Throughput (kg/h)

Cell performance (% AM1)

>_100 _>t 50* 50.0

> 10 _ 10 _>10 15.0

_> 10 15 15 15.0

9O >90.0

> 2.5

>14.0

* Six ingots, each 25 kg, from a single crucible.

8 .! °



Kayexalsoperformedanextensivestudyofthe
influenceof crucibledevitrificationanderosionon
crystalquality.Thevitreousquartzcontainerswere
suspectedasthesourceofimpuritiesorofSiO2
particlesresponsibleforlossof ingotstructure.
Althoughstate-of-the-artcrucibleswereshownto be
impureandclearevidenceofcrucibledegradation
wasdeveloped,thedirectinfluenceofthecrucibleon
crystalqualitywasnotdetermined.Baseduponthe
devitrificationrate,cruciblelifetimewasextrapolated
tobe >10Oh.

Solarcellperformancewasusedasthefinal
measureofcrystalquality.Datafrom2x 2cmbase-
linecells,fabricatedandtestedbyAppliedSolar
EnergyCorp.(ASEC),wereusedto evaluatethebase-
linegrowthprocess,toevaluatetheinfluenceof
extendedgrowthrunsinvolvinglargersinglecrystals
andmultiplecrystalsfromasinglecrucible,andtotest
theusefulnessfordevicesofwaferswithdegraded
structure.TypicalresultsaregiveninFigure4.Tri-
anglesrepresentsingle-crystalmaterialandshowno
appreciabledegradationafter>80kgof growth.The
squaresrepresentpolycrystallinecellsand,although
nodegradationisobservedrelativetototalmaterial
grown,theperformanceofthepolycrystallinematerial
clearlyis inferiortothatofthesingle-crystalcells.

In1979,aseriesofuniqueshort-term,high-risk,
acceleratedTDcontractswasawardedinparallelwith
theworkcontinuingaccordingtotheProjectplan.These
contractswerefundedbyaspecialCongressionalappro-
priationandareknownasthe"Tsongas"contracts.One
ofthemwastheJPLcontract,"Low-CostCzochralski

CrystalGrowingTechnology,"awardedtoKayex.Its
purposewastheshort-termcostreductionoftheCz
processby:

(1) Adaptationof"cold-crucible"technologyto
rechargethecontinuousCzgrowthprocess.

(2) Developmentofmicroprocessorcontrolto
increaseyieldandthroughput.

(3) Useof radiofrequency(RF)heatingandawater-
cooledheatsinkinthegrowthchamberto
acceleratebothmelt-inandcrystal-pullingrates.

Duringthe18-monthcourseofthecontract,the
processof meltrechargingbythecold-crucibletech-
niquewasdevelopedonlythroughthebenchtest
stage.ThissystemfeaturedanRFpremelter/levitator
thatdeliveredhigh-purityliquidsilicontothegrowth
crucible,withoutthesiliconcontactingthedelivery
system.Successfulbenchtestingwasdemonstrated,
buttheprocesswasneveradaptedto,anddemon-
stratedin,thecrystal-growthsystem.Theprogram-
mablemicroprocessorcontrollerwasusedsuccess-
fullytocontrolthediameterofacrystalfora limited
periodoftime.Thedevelopmentsofhardwareand
softwareto controlmeltdown,dipping,growthofthe
shoulder,andtailing,allofwhichweretobepartof
theprogram,werenotachievedduringtheperform-
anceperiod.TheuseofRFheatingandwatercooling
to acceleratetheprocesswasunsuccessful.The
buildupofSiOonthecoilsinterferedwiththeprocess,
andtheeffortwasterminated.
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Twoaccomplishmentsoftheprogramare
noteworthy:

(1) Themicroprocessorworkbecamethefounda-
tionuponwhichaverysuccessfulautomated
growthprocesscontrolsystemultimatelywas
developedpartlyundera JPLcontract,and
partlywithKayexinternalfunding.

(2) Aconicalmolybdenumheatshieldwasdevel-
opedthatisplacedabovethemeltinthe
crucible.It resultsinacceleratedmelt-inand
crystalgrowthratesbyeffectivelyreducing
heatlossfromthemeltsurfaceandestablish-
ingasteepthermalgradientabovethemelt.

TheProjectundertooktosupportthefurther
developmentofthecommercialCzprocesstoachieve
lowercostsandhigherthroughputs.Toachievethe
costgoaloftheFSAProject,thefollowingprogram
goalswereestablished:

(1) Continuousgrowthfromonecommoncruci-
ble,withmeltreplenishment,of 150kgor
moreof multipleingots,eachapproximately
30kginweight.

(2) Allcrystalsshouldhavearesistivityof1to
3 9-cm,p-type.

(3) Dislocationdensityof _<104/cm-2

(4) Diameterof15cmforeachingot.

(5) Growththroughput_>2.5kg/hofmachine
operation.

(6) Crystalorientation< 100>.

(7) After-growthyieldof _>90%oftheas-grown
crystal.

(8) Developmentofprototypeequipmentsuitabte
forhigh-volumesiliconproductionthatis
transferabledirectlytoindustry•

Modifications(toa KayexCG-2000puller)included
microprocessorprocessautomation,>25kg/hacceler-
atedchunksiliconrecharge/melt-incapability,anda
radiationshieldto helpacceleratetheproductthrough-
putto > 2.5kg/h.A studyof theinfluenceof process
parametervariationoncrystalqualitywasincludedin
theprogramaswellasademonstrationofequipment
andprocesscapability.Thelatterincludedtherequire-
mentthatfiveconsecutiverunsproduceaminimumof
150kgofgood-qualitysiliconmaterialbypullingamaxi-
mumoffiveingots,eachof15cmdiameterandof30kg
weight,atagrowththroughputrateof2.5kgthfroma
singlecrucible,withthemelt-replenishmentprocedure
developedpreviously.

Sixmonthsintotheprogram,theFY81funding
wasreducedandthecontractwasextended6months
throughMarch1982.

Thenewprototypecrystalgrower(Figure5),
designatedModCG-2000duringtheprogram,was
offeredwithslightmodificationcommerciallyasthe
CG-6000atthecompletionoftheprogram.Thenew
baselinemachinefeaturedimprovedhot-zonedesign
withupto40-cm-(16-in.-)diametercruciblecapability,
improvedcrucibleandseedrotationmechanismsand
seals,improvedchamberdesigntoreducethechance
ofwaterleaks,a largerpowersupply(150kWversus
125kW),amolybdenumheatshield/purgecone,mod-
ularconstruction,andamodifiedcontrolconsoleto
interfacewiththeKayexAutomaticGrowerLogic
(AGILE)computercontrolsystem.Constructionand
trialtestingofthe;ModCG-2000wascompletedin
April1981.Duringsubsequentprocessdevelopment
testing,agrowthrunwasmadeinwhichfive30-kg
crystalswerepulled,totaling145.5kg.Thefirsttwo
crystalswere90and65%dislocation-free,respec-
tively,butthesubsequentcrystalsweredislocated.

J

Figure § Kayex Prototype Crystal Grower
,_Model CG-2000)

10

The program then was revised by direction from
JPL. The number of 150-kg demonstration runs was
reduced in favor of:

(1) Increasing throughput, especially through use
of a radiation shield.

(2) Development of the microprocessor control
system
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(3)

(4)

Study of the interaction between the furnace
atmosphere and the crucible/melt.

Evaluation of the possible use of synthetic-
quartz crucibles. (The cost of such crucibles,
either bulk or synthetic-quartz-lined, was
prohibitive.)

ous monitoring by the operator as well as the operator's
freedom to vary arbitrarily growth process conditions
during the run. The result is the reproducible growth of
more-perfect crystals. Operation of the integrated sys-
tem successfully was demonstrated by growth of four
10-kg crystals from 12-kg melts using identical process
parameters. Two of the crystals are shown in Figure 6.

A molybdenum cone radiation shield, supported by
a graphite ring and legs, was designed to stand on the
top heat shield ring. The cone extended up to the fur-
nace tank cover and down into the crucible. Using this
conical shield, accelerated growth rates up to 20 cm/h
were achieved. Additional advantages obtained from
using the shield included the growth of crystals free
from oxide coating and simplified melt-in due to the
shield's funneling of silicon chunks toward the center of
the crucible.

The most significant single achievement of the
Kayex program was development of the hardware and
software to automate the growth process. Sensors were
developed to measure melt temperature, ingot dimen-
sions, and melt level to support automation of seed dip-
ping, termination of crown growth and shouldering,
ingot diameter control, and melt level control. The
proprietary Kayex AGILE control system was joined to
the Mod CG-2000 to complete the control loop.

The AGILE computer-based control system, a
Kayex Corp. proprietary development, not only contains
a control loop for setting and stabilizing the melt tem-
perature prior to seed dip, but also the logic to control
the growth of the neck, shoulder, body, and tail of the
ingot. The system reduces the responsibility for continu-

The purpose of the gas analysis program was to
determine the effects of process parameters on the
furnace atmosphere. This would relate process param-
eters and furnace atmosphere to characteristics of the
crystal. A new gas analysis system was designed con-
sisting of a modified ethylene gas analyzer sensitive to
low levels of CO and hydrogen, a continuous oxygen
monitor, and a hygrometer that could be used to pro-
vide continuous data to monitor water vapor levels.

Completion of the entire gas analysis system was
extended because of a reduction in funding. During test-
ing, the oxygen monitor was found unsatisfactory and
was removed from the system. The final system was
capable of monitoring hydrogen, carbon monoxide, and
water vapor.

A characteristic plot of hydrogen and CO concentra-
tions as functions of time during a crystal growth run is
shown in Figure 7. The overall pattern was similar for all
growth runs with details changing as run details changed.
In one case, continuous monitoring provided real-time
evidence of a major air leak that was remedied during
the growth run. Minor air leaks were lost in the signal
noise. Use of the analyzer provided valuable insight into
the requirements for the graphite, hot-zone hardware,
bake-out process. Monitoring of the water vapor and CO
concentrations in the furnace during the bake-out of new

Figure 6. Ingots Grown with AGILE Control, lO0-mm-Diameter lO-kg
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parts indicated a 3-day bake-out (5 to 7 h/day) was
necessary to reduce the production of CO and hydrogen

during the heat-up. Lower water vapor and CO concen-

trations typically are seen in the bake-out of used

graphite setup parts.

In 1982, as part of the Project redirection by DOE,

the Cz crystal growth TD effort was terminated. At

Kayex, all of the contract goals were achieved individ-
ually (e.g., growth rate, throughput, yield, etc.), but not

simultaneously.

The Mod CG-2000 prototype puller was shipped
to Arizona State University where it has been set up to

continue scaled-up silicon crystal growth TD with
alternative sources of funding• The Kayex CG-6000, a

modified Mod CG-2000, is commercially available and

is being used for the production of silicon ingots for
solar cells.

Key Accomplishments• The key accom-
plishments of the Kayex Corp. R&D are:

(3) Development of a conical molybdenum heat
shield located above the melt. It resulted in

acce!erated melt-in and crystal growth rates.

(4) Development of a multiple growth process for

large ingots from one container• This included

development of a method to recharge cruci-

bles with chunks of silicon while at operating

temperature• Large-diameter ingots (up to

1 5-crn diameter) were grown• Five 30-kg

ingots were grown in a single growth run•

(5) Demonstration of no appreciable degradation in

the performance of solar cells made from silicon

obtained from extended growth runs of multiple

ingots from a single crucible after 80 kg of
growth.

Present Status• The Kayex CG-6000 Cz
ingot puller with automatic controls is a modification of

the puller developed under FSA Project support. It is

available commercially and is being used in industry

for production of silicon ingots for solar cells•

(t)

(2)

Development of the hardware and software for

automating the growth process•

Demonstration of the growth of 150 kg of

1 5-cm-diameter ingots from one quartz
crucible•

b. Siltec Corp•: Continuous Liquid Feed

Czochrals_:J Method• Beginning in December 1977, the

Siltec Corp was funded by the Task to develop the

continuous liquid feed (CLF) Cz ingot growth process•
Progress on this continuous ingot growth method is

summarized _n Ibis section and reported in detail in

contractor quarterly reports (Reference 9).

12
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The new CLF concept proposed by Siltec
involved a dual-chamber Cz growth system. Silicon
feed material, in the form of chunks of polycrystalline
ingot, continuously is fed into the hot zone of one fur-
nace chamber and melted in a quartz crucible. The
molten silicon then is transferred by a pressure differ-
ential through a heated transfer tube into a second
furnace chamber from which it is concurrently with-
drawn as a single-crystal silicon ingot using the Cz
process. The dual-chamber system includes melt-level
control in the second chamber by a closed-loop sys-
tem that senses the melt level and controls the rate of

melting in the first chamber (Figure 8). ,_.

The original contract called for the design:, _lev_-
opment, and fabrication of a CLF growth furnace,
theoretical analysis of the process, and evaluation of
the completed system. Evaluation was to include
demonstration of nonreplenished Cz growth, melt-
down in the first chamber, and melt transfer. Ulti-

mately, the evaluation was to include three lO0-kg
runs each made up of five continuously replenished
20-kg ingots.3 The growth process parameters also

were to be evaluated by characterizing the quality of
the CLF silicon sheet product through the fabrication
and testing of solar cells.

By 1979, the furnace (Figure 9) had been
designed and fabricated, and initial liquid silicon

PAGE IS

QUALITY
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Figure 9. Siltec Furnace for Continuous-Liquid-Feed
Growth

Figure 8, Schematic of Siltec Continuous-Liquid-Feed Czochralski Ingot Growth Process

3The goal of 100 kg for each continuous CLF run was based on a Task analysis that indicated this was the
minimum yield required to achieve the 1982 cost goal (see Reference 5).
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transferhadbeendemonstrated.Someoperational
shortcomingshadbeenencountered,however,and
furthercostanalysishadindicatedthatcontinuous
runsyieldingmorethanthe100-kggoaloftheinitial
contractwouldberequiredtoachievethe1986cost
goalsof theFSAProject.

A June1979contractextensionandmodification
calledforredesignandimprovementofthetransfer
tube,designandfabricationofanautomatedsilicon-
particlefeed-hoppersystem,andmodificationofthe
furnacetooperateunderreducedpressure.Mostimpor-
tantly,thecontractcalledfortwodemonstrationseachof
150kgof15-cm-diametersingle-crystalsilicon(six
ingotseachof25kgfromasinglecrucible)grownbythe
continuousCLFCzgrowthmethod.ByOctober1979,
Siltechaddemonstratedsuccessfulfurnaceoperation
andliquidtransferat30to35torrandhadgrown,on
theirthirdeffort,a t0-kg,12.5-cm-diameterby32.5-cm-
(13-in.-)long,zero-defectsiliconingot(Figure10).(The
silicontransfertubeisseentotheleftoftheingot.)By
February1980,however,numeroustechnicaldifficulties
wereencounteredwiththegrowthsystem.These
includedmeltvibrationcausedbythevacuumpump,
SiOxfallingontothemeltsurfaceandinterruptingthe
growthprocess,and,mostcritically,repeatedtransfer
tubefailure.

growthrate,85%yield,14%solarcellefficiency,and
1kg/hgrowthrateaveragefor70h.Becauseof
Siltec'sinabilitytoachievetherequiredcontract
deliverablesandProjectbudgetrestraints,however,
theCLFTDeffortwasreduced.Afinalmaximum
throughputdernonstrationoftheprocessatSiltecwas
thegrowthc:fa boule65kginweight,15cmin
diameter,ar'.dabout1.5min length(Figure11).The
first30cmofgrowthwassinglecrystal,theremainder
beingpolycry£latline.
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Figure i I Comparison of Czochralski Ingots Grown
by Early Technology and by Continuous-
Liquid-Feed Process

Figure 10. Growth of Silicon Ingot by Continuous
Liquid Feed

In March 1980, a new transfer tube design was suc-
cessfully demonstrated and the Siltec contract was
extended. The goals of the extension (Phase 3) called for
two 150-kg scale-up feasibility demonstration runs by
July 1980. All original goals of the program remained
unchanged, including a growth throughput rate of 2.5 kg/h,
_>90% yield of high-efficiency cells (_>15% AM1) to be
fabricated from the sheet, uniform resistivity from ingot to

ingot, etc. An additional 15 months were added for the
design, construction, and demonstration of a prototype
production puller (Phase 3) and 10 demonstration growth
runs. Initiation of Phase 3 depended on successful

completion of Phase 2.

By April 1980, Siltec had successfully demonstrated
the following individual accomplishments: 70 kg of ingot
up to 15 cm in diameter from one crucible, 2.5 kg/h

In 1982, the CLF growth system was shipped to
JPL where it was installed and made operational. It
was dismantled for storage after it was run intermit-
tently in a non-CLF mode until the end of the FSA

Program in t986.

tn this effort, Siltec successfully grew 100 kg of ingot
from a continuously recharged crucible at an average
rate of 2.1 kglh: continuous liquid-silicon feed from melt
chamber to growth chamber was demonstrated. Auto-
matic control of ingot diameter (+380 _.m in 12.5 cm or
more) was developed and demonstrated.

c. Texas Instruments: Czochralski Process

and Multiblade Slurry Sawing Technology Develop-
ment. From 1975 to 1977, Texas Instruments pursued

a large-area Cz silicon ingot growth TD effort and a
parallel multibtade slicing TD effort. In both cases, the
work involved development of innovative approaches
to achieve cost reduction, tn a separately funded
effort, Texas Instruments endeavored to develop an
innovative "continuous" Cz process that included the
premelting of silicon in a separate crucible within the

growth chamber (Reference 10) and delivery of molten
silicon to the main melt as required to maintain the
melt level (Reference 11 ).

The "continuous" crystal growth method, devel-

oped in the period 1975 to 1977, employed the use of
water-cooled coils and direct gas flows around the
growing crystal. This cooling technique was to remove
the latent heat of fusion and increase the growth rate
and the use of an auger and vibrating drive to feed
granular silicon to the melt and allow semicontinuous

14



crystalpullingfromaVarianAssociatesproduction
puller.Verticalandhorizontalcruciblepremelterswere
evaluatedexperimentallyandtheresultscomparedto
theoreticallyderivedmaximumpullratesfortheCz
crystalgrowthprocess.A completecostanalysiswas
includedaspartofthisprogram.

Numerousproblemswereencounteredin the
efforttochargeorrechargethecruciblescontinuously.
Becauseofoxideformationandtheintroductionof
carbonandthesubsequentformationofsiliconcar-
bidein themelt,nolargesinglecrystalsweregrown
byeitherprocess.Noappreciableincreasesingrowth
ratewereobtainedbyeitheroftheingotcooling
schemes.Intheslicingprogram,cuttingrategoals
wereapproachedusingboroncarbideastheabrasive.
Thehighcostof boroncarbide,however,madeitsuse
unacceptableinascaled-upoperation.Cuttingrate
goalsforuseofsiliconcarbideasanabrasivewere
notachieved.Thiseffortwasterminatedbecauseof
bladefailurecausedbybowingofthediamond
impregnatedblades.

Thewaferingeffortstestedbothfreeandfixed-
abrasivemultibladesawingof fixedandrotatingsilicon
ingots.Aspartof thewaferingcost-reductionprogram,
TexasInstrumentsevaluatedtheuseof laserscribing
asopposedto ingotgrindingforwafershaping.An
economicanalysisofthecostreductionpotentialof
theseprocessesalsowasincludedintheprogram.

Noneoftheinnovationsevaluatedduringthetwo
TexasInstrumentsTDeffortsisincommercialuse
today.TheTexasInstrumentseffortwasthefirstCz
contracttobedroppedfromtheprogram.Theconclu-
sionsandrecommendationsoftheteamatTexas
Instrumentsare:

(1) Crystalgrowthmodelingandexperiments:

(a) Pullrateenhancementtechniques,such
asemployingcoldcoilsaroundthegrow-
ingcrystalsorfunnelingambientgasover
thecrystal,haveminoreffectsonthe
maximumpossiblepullrate.

(b) Themaximumpullratevariesinverselyas
thesquarerootofcrystaldiameter.

(c) Melt agitation from incoming molten sili-
con droplets does not, of itself, destroy
crystallinity.

(d)

(e)

From economic and operational stand-
points, furnace runs consisting of four or five
crystals per run with a total weight of silicon
of 100 kg are optimal. A negligible cost
improvement is obtained for larger runs.

Oxide buildup on the premelter was the
major problem inhibiting more extensive
continuous runs.

{f) Auger-feed mechanisms for silicon result

in contamination from abrasion by the sili-
con particles.

(2) Multiblade slurry sawing:

(a) Slice thickness of 0.25 mm (plus
0.31-mm kerf) can be achieved with high
yield for large-diameter crystals.

(b) Sawing rates are directly proportional to
blade load and speed.

(c) A cutting rate of 5 mm/h is obtainable with

SiC abrasive. B4C abrasive is about 2.5
times faster, but its cost is prohibitive.

(d) As-sawed slices have a lapped appear-
ance and can be readily processed into
solar cells after a texture etch. Saw

damage depth increases with blade load
with 33/_m being maximum at 2.5-N
loads.

d. Varian Associates, Inc.. Continuous Czo-

chralski Growth. In December 1977, the Lexington
Vacuum Division of Varian Associates initiated a con-

tinuous Cz silicon crystal growth process TD program
(Reference 12). Continuous growth was defined in the
contract as the growth of 100 kg or more of single-
crystal material from a single quartz crucible. The
overall objective of the work was to "lower the add-on
cost for the Cz growth of silicon to $11/m2 or less (at
0.795 m2/kg wafering capability)."

The program was divided into two phases. The
first phase was to demonstrate true continuous growth
using a modified Varian 2850 Cz furnace. Demonstra-
tion milestones were to be:

(1) Simulated recharging prior to furnace modifi-
cation, e.g., repeatedly remelting and regrow-
ing one ingot without opening the furnace.

(2) Batch recharging with solid silicon.

(3) Continuous recharging with solid silicon.

(4) Continuous recharging with molten silicon.

Modifications to the 2850 furnace to make this possi-
ble were to include incorporation of an isolation valve

between the main chamber and the seed mounting/ingot
removal chambers, and addition of a silicon feeder with

its own charge-isolation lock. Although the modifications
were made, and an automated control system was
installed on this furnace, none of the replenishment or
throughput goals were demonstrated with it.

Phase 2 was to be the design, fabrication, and
demonstration of a commercially scalable production
prototype furnace, designated the 2860, capable of

achieving the performance and cost goals of the Project.
The prototype furnace was planned to include all the
features of the modified 2850, plus improved sensing
and automation expected to result in higher throughput of
uniform-diameter ingot. The latter could be subsequently
ground to specification with nearly one-third greater after
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grind yield. The furnace was to be designed to be
capable of growing individual ingots up to 1.8 m long and
also to use up to 40--cm (16-in.) crucibles. Although the
contract called for only a 100 kg demonstration, 150 kg
of ingot growth continuously per crucible were projected
by Varian to be required to meet the $11 tm2 goal.

Key Accomplishments of the Varian R&D.

The single most significant accomplishment of the pro-
gram was the design and construction of the model 2860
Cz crystal growing system (Figure 12). This machine,
although never finally assembled or operated, incorpo-
rated both state-of-the-art and innovative features for its

time. The Cz growth system technology developed
under this contract served as the foundation for the

design of the present commercial production machine
produced by the Ferroelectrics Corp.

e. Washington University at St. Louis:
Czochralski Crystal Growth Modeling. From April 1985
through June 1986, Washington University at St. Louis
performed an extensive modeling study of Cz crystal
growth heat flow (Reference 13). The goal of the study
was to develop a comprehensive predictive model that
can be used to guide the direction of process TD for

the growth of larger, more perfect crystals. The work

Figure 12. Varian Model 2860 Czochralski Crystal
Growing System

plan consisted ot the following five tasks: (1) a critical
literature survey, (2) development of an algorithm/model
suitable for predicting the temperature distribution in

the crystal and for calculating the melt-crystal interface
shape, (3) performance of parametric studies using the
new model, (4) modeling of the melt hydrodynamics,
and (5) assessment of the model using available

experimental data

A mathematical model, developed for the simula-
tion of the Cz process, predicted the temperature field
in the crystal and the melt along with the crystal-melt
interface shape and the pull rate. The modeling approach
analyzes the complete system: crystal, melt, and enclo-
sure. This model assumed either conduction-dominated
heat transfer in the melt or known heat transfer coeffi-
cients. The shape of the crystal-melt interface affects the

quality of the crystal by influencing the radial dopant con-
centration profile. The pull rate is important in keeping
the diameter of the crystal constant and in achieving the
acceptable leve of productivity. The temperature field in
the crystal is needed to calculate thermal stresses.
These, in turn, are used to estimate the extent of disloca-
tions in the wafers along the crystal. Accounting for both
direct and reflected radiation, the effects of the melt-gas

meniscus shape and detailed radiation calculations were
incorporated into the model.

The detailed model of the Cz process was used

for extensive parametric studies. The effects of impor-
tant variables on growth rate and interface shape were
examined and explained. The results of the detailed
model were used to develop a simple model that
describes the relationships among the important
variables such as crystal radius, pull speed, crucible

temperature, melt volume, and interface shape.

The simplE.' model can be used to simulate the
entire growth cycle of the Cz process and can also be
used to develop and implement various operating
strategies to monitor the growth process.

Based on the above simulations, a novel tech-

nique that uses a gas jet to control the growth process
was analyzed. Adjustments of the gas flow rate
through the jet can be used to control the crystal
diameter which is more stable when the crystal is

grown in a convection-dominated environment. Con-
trol of diameter by gas-jet cooling is more effective
than control through adjustments of crucible temper-
ature or pulling rate. In the presence of jet cooling, it
may be possible to control simultaneously both the
diameter and the interface shape.

A steady-state model of the hydrodynamics in the
melt also was developed to study the relative effects
of conduction and convection heat transfer. The
Navier-Stokes equations with the Boussinesq approxi-
mation are solved with a checking finite-element
solution tecnn_que. The model and the computer code
are useful in s:udying and characterizing the relative
importance of the various phenomena (natural convec-
tion, crystal rotation, thermocapillary flow, etc.) that
dictate the melt flow field. Model convergence is not
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achieved, however, at the Reynolds and Grashoff
numbers characteristic of the commercial operating
region of interest. This implies that the flow field may
be of an oscillatory nature and that a transient model

may be needed. This would indicate that the highest
quality crystals cannot be grown without some stabil-
izing effect such as a magnetic field.

Thermally induced stresses are one of the major
causes of dislocations (by slip and twinning) in the
crystal. Preliminary stress calculations were performed
to study the dislocation density distribution on the
wafer surface. It was concluded that the best-quality
wafer is obtained away from the center and the outer
periphery. This distribution has also been observed in

past experimental investigations. The key to reducing
the stress levels in the crystal is to have growth at low
Blot numbers.

Key Accomplishment of the Washington
University at St. Louis Research. Development of a
comprehensive predictive model for the Cz growth
process that can be used to guide the direction of pro-
cess technology development for improved growth.

f. JPL In-House Research and Development.
JPL's crystal growth effort grew specialized Cz ingots
for research applications. The Siltec CLF furnace,
described in Section ll.B.1 .b, and a modified Norton
system were used.

A variety of specialized crystals were grown to
evaluate and support in-house and contractor studies.
Single-crystal ingots of p- or n-type with orientations of
<100>, <111>,and <110> were grown up to
15-cm diameter. Accelerated ingot growth experiments
were performed using helium gas and copper dopants.
Small amounts of copper aided the growth speed, but
larger quantities of copper resulted in polysilicon material
(Reference 14). Bicrystals of < 110 >/< 111 >,
< 100 > / < 110 >, and < 110 > t < 111 > configurations,
and < 100 >/< 111 >/< 100 > tricrystals were deliber-
ately grown with angles between the orientations ranging
from t to 20 deg. The smaller angles were stable and
formed straight-grain boundaries readily, but larger angle
structures were unstable. Straight-grain boundaries were
more difficult to maintain, frequently resulting in twins,
polysilicon interfaces, and zigzag grain boundaries.

Cz crystal growth runs also were made in support
of the Silicon Materials Task to provide material to
evaluate the silicon purification processes.

2. Heat Exchange Method

a. Crystal Systems, Inc.: Process Develop-
ment. From November 1975 to June 1981, the FSA
Project supported the development of the HEM to
grow silicon ingots at Crystal Systems, Inc. (CSI) of
Salem, Massachusetts (References 15, 16, and 17). As
part of the same contract (954373), CSI also worked
on the development of a multiwire ingot slicing tech-
nique called Fixed Abrasive Slicing Technique (FAST),
described in Section III.B.3.b.

17

The HEM process employs a directional solidifica-
tion technique in which a silicon melt contained in a
crucible is solidified by controlled removal of heat

without moving the crucible, heat zone, or crystal.
Removal of heat from the bottom of the crucible is

accomplished by a heat exchanger employing helium
gas. After its growth, the ingot (Figure 13) can be
annealed and cooled at a controlled rate to relieve

stresses and thereby prevent cracking. A configuration
of the HEM furnace is shown in Figure 14, and the
crystal growth scheme is displayed in Figure 15.

Figure 13. Ingot Cast by Heat Exchange Method at
Crystal Systems, Inc.

I

_e_1 E_c_ef --

L Helium

Figure 14. Schematic of Heat Exchange Method
Furnace
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Growth of a crystal by the heat exchanger method:
(a) Crucible, cover, starting material, and seed prior to melting.
(b) Starting material melted.

(c) Seed part;ally melted to insure good nucleation.
(d) Growth of crystal commences.

(e) Growth of crystal covers crucible bottom.
(f) Liquid-solid interface expands in nearly ellipsoldal fashion.
(g) Liquid-solid interface breaks liquid surface.
(h) Crystal growth completed.

Figure 15. Crystal Growth Using the Heat Exchange Method

The HEM program consisted of the following four

phases:

(1) Phase 1 : Establishment of the proof-of-concept.

(2) Phase 2: Square cross-section ingots were
grown with a high degree (up to 90%) of
single crystallinity; 10 x 10 cm cross-section
ingots weighing 3.3 kg were grown.

(3) Phase 3: Scaled-up process to grow 22 x 22 cm

ingots weighing 16.5 kg. No degradation in
material quality resulted from the five-fold
scale-up as the 90 % single crystallinity was
maintained.

(4) Phase 4: Design, fabrication, and testing of a
prototype furnace capable of directional solid-
ification of cubic ingots 30 cm on a side. The
concept of using grower parts made of unpuri-
fled graphite and removing impurities by initial
bakeout at high temperatures was established.
Use of this procedure did not degrade quality
of the silicon product. Ingot size was scaled
up to 34 x 34 x 17 cm with a mass of 45 kg.

One advantage of the HEM process is solidifica-
tion of the melt from the bottom center toward the
walls and the top surface. Thus, impurities are driven
to the outside surfaces. Subsequent trimming of the
resulting ingot removes this outer, less-pure material.
Analyses of an ingot grown from solar-grade silicon
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produced by the Dow Coming Corporation's Direct
Arc Reactor process showed that significant purifica-
tion and effective segregation has been achieved.
Another advantage of the HEM process involves ingot

slicing. It yields square wafers that provide high solar
cell packing densities.

Numerous problems were identified and, in some
cases, solutions were found. One problem was to
achieve sharp corners for the ingot. Rounded corners
decreased silicon yields considerably. Some improve-
ment was attained by supporting the crucible walls to

prevent deformation (rounding) during exposure to
elevated temperatures. Use of crucibles fabricated
from flat sheets of silica gave sharp ingot corners but
no low-cost technique for producing crucibles by this
method was available. Control of heat flow to obtain

rapid solidification rates and yet prevent formation of
potycrystalline silicon was not achieved (Figure 16),
nor was a sufficient reduction in cooldown time
achieved to improve the economics of the process. At
the close of the program, it required about 24 to 36 h
after solidification of the melt before the ingot could be
removed from the furnace. Silicon carbide particles
were found to be dispersed throughout HEM material.

They have been associated primarily with backstream-
ing of oil vapors from the mechanical pump. A
molecular sieve trap on the vacuum line reduced the
contamination, but did not eliminate it entirely.

Solar cell efficiencies for these unoptimized HEM

materials throughout the ingot averaged significantly



Figure 16. Cross-Section of Ingot Cast by Heat
Exchange Method Showing Single-Crystal
and Polycrystafline Regions

below that of coprocessed Cz material. This is a seri-

ous disadvantage if high efficiency is an important
factor. The large-grain polycrystalline regions pro-
duced solar cells having efficiencies comparable to

those made from the single-crystal regions. This sug-
gested that grain boundaries are not limiting material
quality, and therefore that silicon carbide precipitates
are probably responsible. In regard to cell perform-
ance, it should be pointed out that the device
processing was not optimized for HEM.

Key Accomplishments. Key accomplish-
ments of the CSI HEM development are:

The HEM process was scaled up to produce
ingots about 34 x 34 x 17 cm in size that
weighed 45 kg.

(1)

(2) A square cross-section crucible was devel-
oped that gives >90% yield of silicon ingot.

Solar cell efficiencies greater than 12% were

obtained from solar-grade silicon using HEM
material after a double-solidification process.

(3)

Present Status. Development of the HEM
process under JPL/DOE sponsorship ended in June 1981.

Crystal Systems, Inc. provides commercially available
HEM multicrystalline silicon that has a columnar struc-
ture. Ingots about 33 x 33 x 15 cm are sectioned into
nine 100 x 100 mm bars.

b. JPL In-House: Characterization of HEM
Silicon. Research was conducted to characterize the

chemical, mechanical, and electrical properties of
HEM material as functions of spatial position within the
ingots (References 18 and 19).

The study led to the following conclusions:

(1) Resistivity is very uniform throughout the
ingot.

(2) Oxygen content has no effect on the efficiency
of the material.

(3) Overall efficiency of the usable material aver-
aged throughout the ingot is about 85% of
that observed for coprocessed Cz cells.

(4) Large-grain polycrystalline HEM material is
comparable in efficiency to that of single-
crystal HEM material.

(5) Large SiC precipitates (50 to 100/_m) may
limit solar cell efficiency.

(6) A high dislocation density of about 106/cm2
results in an overall low diffusion length of
34 #m.

3. Ubiquitous Crystallization Process: Solarex Corp.

A portion of the ubiquitous crystallization process
(UCP) development program was supported as part of a
cooperative agreement between DOE and the Solarex
Corp., and was instituted in June 1980 (Reference 20).
FSA Project personnel had technical cognizance of the
work with administrative control directly from DOE. For
two reasons, the information reported here is abridged
considerably. First, the scope of the program was quite
large, initially planned to cost-share $9 million, although
budgetary restrictions eventually reduced that to less
than $5 million. Second, the development was con-
ducted under a proprietary arrangement in which many
of the details of the technical processes involved were
held proprietary to Solarex. Significant technical progress
was made, however, and can be reported in a summary
fashion.

At the outset of this development program, UCP
was a commercial operation. It produced blocks of sili-
con approximately 10 x 10 x 12 cm high weighing
about 4 kg. These subsequently were wafered into
square slices for solar cell processing (Figure 17). As
initially planned, the specific elements of the develop-
ment program were to demonstrate:

(1) Suitablility of the potycrystalline cast material
for terrestrial applications.

(2) Development of equipment at the throughput
levels consistent with DOE price goals.

(3) Operation of production equipment consistent
with the DOE price goals. Key elements of the
effort involved development of scaled-up equip-
ment for casting, with the ultimate goal being
single blocks of silicon in the 50 to 100 kg
range, followed by cost-effective wafering of this
material into useful slices. The manufacture of

these slices into solar cells was a part of this
program only to the extent that it had to be
demonstrated that the material produced was
consistent with the necessary efficiency. Empha-
sis was on the control and understanding of
defects in the cast material. Device design and
other cell and module processing elements were
not included.
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Figure 17. UCP-Cast Polycrystalline Blocks and
Solar Cells Fabricated from UCP Material

(Solarex Corp.)

Cost analysis of the critical elements of the

process indicated major cost reduction could be
achieved by increasing the size of the cast block from
the initial 4 to 50 kg or better. To achieve this, several
prototype furnaces were built. The first had a capacity of
about 17 kg, producing an ingot 20 x 20 x 12 cm high.
Larger units designed for 50 kg operation were con-
structed and initial operating conditions successfully
determined. At that point in the development, emphasis
in the DOE cooperative agreement changed to a more
fundamental nature in which further development of this
furnace was not included as part of the agreement.

The furnace scale-up activities resulted in several
important conclusions concerning casting of potycrystal-
line silicon blocks. First, larger furnaces showed signifi-
cant advantages with respect to increases in kilowatt-
hours per kilogram for casting and with respect to
increases in the average grain size of the cast product.

The successful scale-up of this operation to an
economic level consistent with DOE goals requires a

wafering process capable of producing sufficiently thin
slices at an appropriate rate. Within this program,
several alternative wafering methods were evaluated
as well as additional development of new advanced
methods.

Early studies evaluated the performance of con-
ventional commercial multiblade slurry saws with

respect to the requirements of this program. Results of
these studies indicated these saws were incapable of
simultaneously meeting both the throughput require-
ments and the slice thickness plus kerf-loss require-
ments. Individual tests targeted for either parameter
approached the necessary values, but always at the
sacrifice of the other parameter. For this reason, these
studies were discontinued with the conclusion that

such wafering could not meet the economical goals of
the Project and that no concepts for technical
improvements were apparent.

2O

Subsequently, a high-speed multiblade slurry saw
was evaluated that was capable of operating at

speeds up to five times that of a conventional saw.
This study was done under a proprietary agreement
with the saw manufacturer. This saw showed consider-

able improvement over the conventional multiblade
slurry saw and simultaneously demonstrated output
rates of 0.52 m2/h at 0.57 m2/kg (slightly greater than
50% of required values). In spite of these reasonable
successes, numerous technical problems, involving
failure of mechanical components in the saw and
repeated adjustments during the course of a run, indi-
cated that substantial additional development would be
required. Consequently, evaluation was discontinued
at that time.

Studies were then conducted of conventional ID

wafering machines After significant development in
conjunction with saw manufacturers and, more criti-
cally, blade manufacturers, the ID wafering process
was developed to where the slice and kerf goals were
achieved essentially at 0.86 m2/kg with a throughput
rate of 0.25 m2th (about 25% of the required values).
A more serious limitation was the lifetime of the thin
diamond-coated blades. It was concluded that further

metallurgical development of appropriate high-strength
steel core mater al would be necessary. Such efforts
were not attempted.

Studies were also made of the sources of defects

within the material. Significant improvement was made
with respect to cell efficiency. At the earliest stages of
the research, conversion efficiency was about 10% for
10 x 10 cm devices from the production line. At the
end of the program, the efficiency was above 13 %.
This value compared to a single-crystal control effi-
ciency of 15°/,,. Although some of this efficiency
improvement was the result of improved processing,
not directly supported by this program, better under-
standing and coqtrol of the casting process itself also
resulted in significant improvements. Specifically, the
velocity of the crystallization front must be maintained
at a level to avoid constitutional supercooling (Refer-
ences 2t and 22). Specific crystallization velocities are
dependent upon the ingot size and the detailed shape
of the crystallization front. The effect of stress and
associated deformation during the casting process
could also be observed when thermal geometry was
not properly controlled.

To assist in a design of wafering experiments,
other research investigations included a study of the
fracture strength of the UCP material compared to
more conventional silicons. The results indicated no

detrimental effects from grain boundaries in the mate-
rial when compared to single-crystal silicon. This is
consistent with accepted theories of brittle fracture that
relate the fracture to microcracks in the material rather

than crystal structure.

Automated and semi-automated diffusion length
measurement techniques were developed to assist in
the charactenzation and analysis of the large quantities
of material that were produced as part of this program.
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These were applied both to silicon wafers and to
ingots in the as-cast condition. An excellent technique
was developed for measuring the diffusion length in
wafers, It involved the reflectance of microwaves as a

function of resistivity of the reflector. The reflectance
of a silicon wafer, when pulsed by an external light,
could be measured to yield the resistivity and bulk
lifetime of carriers.

A similar technique to evaluate the lifetime of an
ingot prior to wafering was developed. It consisted of
measuring the quantity of free carriers in a volume of
material using a 1.32 #m infrared laser, while carriers
in that volume were activated by an external, ener-
getic, penetrating source. Two external sources were
considered: pulsed x-rays and a laser near the band
edge of silicon (1.1 #m). The x-ray source was not
considered further because the short lifetime associ-

ated with high-energy pulsed x-ray sources would be
excessively expensive. Consequently, a tunable pulsed
dye laser was used. This combined laser technique was
able to measure lifetime in the silicon at distances up to
2 cm from the surface in a 10-cm-diameter ingot.
Because this process measures the change in concentra-
tion of carriers upon excitation, extremely low resistivity
material is not practical because of the higher intrinsic
concentration of free carriers. As developed, a lower limit
of the resistivity for this technique was about 0.3 ft-cm.

From the results described above, the cooperative
agreement with Solarex resulted in both numerous
technological advances to be used in a production
environment as well as other research advances of a

more general nature. Because many of the technical
advances were incomplete, and because of the pro-
prietary nature of the agreement, the extent to which
these processes have contributed to the manufac-
turing capability of Solarex cannot be quantified. A
more general technology development, such as ingot
lifetime measurement and better understanding of the
requirements of a bulk crystallization process, how-

ever, is available for application to other technologies.

a. Key Accomplishments. The key accom-
plishments of the Solarex Corp. UCP development
under the DOE agreement are:

(_) The UCP was successfully scaled up from
4 kg/ingot to 50 kg/ingot, with improvements
in power use and crystal quality.

(2) A rapid technique was developed to measure
bulk lifetime in wafers.

(3) A rapid technique was developed to deter-
mine bulk lifetime in cast bulk silicon ingots to
a depth of about 2 cm.

b. Future Work. It would seem that the cast-
ing process, per se, does not constitute a fundamental
limitation to the UCP technique. Scale-up seems to be
largely a matter of economics and market. Wafering is
the most critical element remaining, and substantial
improvements are still required. Device performance

suffers to a limited extent because of the polycrystalline
nature of the material. The use of hydrogen passivation,
however, could alleviate this problem somewhat and
should be pursued. Precise control of the casting
process seems to be an engineering development and is
required to ensure reproducibility in the material.

4. Oscillating Crucible Technique: JPL In-House

The efficiency of devices from cast material is
limited by structural factors such as dislocations and
grain boundaries. The oscillating crucible technique
(OCT) was evaluated in the hope of improving crystal
quality (References 23 and 24). In this method, the

crucible containing the melt periodically is rotationalty
accelerated and decelerated to cause an effective melt

stirring which promotes single-crystal growth. The sili-
con ingots used in this program were grown by IBM,
and the characterization was performed both by IBM
and JPL.

Several ingots were prepared. Two different types
of oscillations were tried: unidirectional and bidirec-
tional. The latter method, in which the crucible was
rotated first in one direction and then in the other, was

expected to improve the stirring action and keep the
liquid-solid interface cleaner.

The ingot oxygen content was measured both by
infrared spectrophotometry and secondary ion mass
spectroscopy (SIMS). The results indicated the oxygen
concentration was uniform throughout the ingots. SIMS
also was used to measure the total carbon in the ingots
and it showed no carbon gradient within each ingot.

Structural analysis was carried out for OCT ingots
and for a single ingot grown without rotation for com-
parison. For both ingot types, the single-crystal growth
front broke down early in the runs and turned to small-
grained polycrystalline material. In the case of the non-
rotated ingot, the remainder of the ingot consisted of
this polycrystalline material with the grains randomly
oriented. In the case of the OCT ingots, columnar
grains typically nucleated from the single-crystal
regions and grew all the way to the top of the ingot.
The optimal oscillation rate was not determined nor
whether bidirectional rotation is better than
unidirectional rotation.

In one case, furnace modifications were made to
improve control of the thermal environment, and an
ingot was grown at a relatively high growth rate with
bidirectional rotation. The structural change was dra-
matic: about 70% of the ingot was single-crystal with
the remainder being columnar large-grain

polycrystalline material.

Silicon carbide particles, seen throughout the ingots,
may be responsible for the breakdown of the single-
crystal growth front. Vitreous carbon crucibles were used
to prevent their cracking upon solidification.

The highest efficiency of solar cells made using OCT
material was 12.9% AM1. This was comparable to that
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ofCzcontrolcells.Minoritycarrierdiffusionlengthsinthe
single-crystalregionsreached200#m,andvaluesinthe
polycrystallineregionsexceeded100#m,indicating
excellentqualityforbothtypesofmaterial.

Theuniformityof theoxygenandcarbondataindi-
catesthattheprimaryobjectiveoftheprogramwas
achieved: oscillation of the crucible leads to an

adequate stirring of the melt.

C. SUMMARY

Development of the ingot growth processes was
supported by the FSA Project. Work also was con-
ducted on three efforts in support of bulk growth.

Substantially increased throughput and reduced
cost of the Cz process were achieved, and measur-
able technological developments of other ingot
processes also were achieved. Specifically:

Kayex Corp. completed a contract in 1980 in
which the capability was developed and demonstrated
of growing 150 kg of 15-cm-diameter silicon ingot
material from one quartz crucible. Technology was
developed to allow the crucible to be recharged with
silicon while still under vacuum and at temperatures
above the silicon melting point. Significant improve-
ments were obtained compared to conventional Cz
technology including controls with improved sensors,
prototype equipment that was transferable to industry,
and increase in yields (90% of melt pulled). High solar
cell efficiencies were obtained for the material from

the 150 kg demonstration growth-run product.

Siltec was successful in growing 100 kg of ingot
material from a crucible at an average rate of 2.1 kg/h,
using continuous liquid silicon feed from the meltdown
chamber to the growth crucible. Equipment for auto-
matically controlling ingot diameter to + 0.38 mm was
developed.

Washington University at St. Louis completed a Cz
crystal growth modeling study to predict the important
process parameters such as pulling rate and interface
shape, to provide strategies for growth of large-
diameter crystals, and to lead to improved process
control algorithms.

JPL completed a crystal growth effort both to
produce specialized Cz ingots and to characterize
OCT and HEM _ngots.

CSI, which successfully pursued the HEM TD
program, now provides HEM silicon to the commercial
market.

Solarex Corp. carried out a TD program on their
UCP under a cooperative program funded directly by
DOE, with technical management provided by JPL.
Solarex commercially used the resulting scaled-up ingot
technology. The latter part of the program was changed
to a more fundamental nature wherein studies were

made of the sources of defects within the material (as
related to the casting process), of fracture strength (to
assist in design of wafering experiments), and of
characterization of the material.
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SECTIONIII

Wafering

A. INTRODUCTION

The ability to wafer or slice silicon ingots, grown by
any one of numerous techniques, has a major impact on
the final cost of the wafers produced. Kerf losses (mate-
rial removed during slicing of the ingot) result in the
waste of considerable amounts of expensive silicon, and
wafering uses expensive, precision machines whose pro-
ductivity is relatively low. The added cost of the wafering
step, therefore, is large. Analyses of the cost elements of
PV manufacturing led to the conclusion that slicing
needed to result in about 1 m2 of wafers per kilogram
of silicon, and at a rate of between 0.2 and 1 m2/h,

depending upon other factors of the specific
technology.

At the outset of the program, ID sawing and multi-
blade sawing were the standard techniques employed for
slicing silicon ingots. Evaluation and developmental pro-
grams for these technologies were conducted by ASEC,
Varian Associates, Hoffman Division of Norlin Industries,
Inc., Siltec Corp., and Silicon Technology Corp. Several
other novel and new wafering technologies also were
evaluated and developed. These included a free-abrasive
wire saw produced by Yasunaga in Japan and evaluated
by JPL and by the Solarex Corp. A proprietary high-
speed multiblade saw (800 to 1000 cycles/min) was
evaluated in the Solarex cooperative agreement and is
described as part of the ingot-casting subsection. A com-
pletely new technique, called fixed-abrasive slicing tech-
nique (FAST), using diamond-coated wires, was devel-
oped by Crystal Systems, Inc. None of these technolo-
gies achieved the Project goals because of reasons
described in detail within this Section. The limit encoun-

tered was a trade-off between cutting speed and cutting
yield.

A more recent study at the University of Illinois at
Chicago contributed to understanding the basic process
of material removal. Scratch tests, indentation tests, and
other surface studies were conducted as functions of the

test environment. The results suggest that better under-
standing of the process of wafering could, in fact,
improve its performance. Application of such findings,
however, was not attempted as part of this effort.

The inability to achieve wafering goals in the
middle years of the Project was a significant factor in
the decision to terminate the process of ingot growth
and subsequent wafering as a viable option to produce
silicon sheet.

At present, ID sawing remains the most important
commercial process for fabricating silicon wafers. A
free-abrasive wire saw designed and built by Monsanto
now is used in the regular production of wafers at Mon-
santo, and a new multiwire saw is finding a favorable
market reception. The FAST R&D is being funded by
DARPA as a possible method for slicing ingots of

various electronic materials. None of these processes
has come within a factor of two of meeting the add-on
costs required to support a viable ingot alternative.

B. IMPLEMENTATION

1. Assessment: Optical Coating Laboratory, Inc.

From September 1977 through February 1978,
the Photoelectronics Division of Optical Coating Labo-
ratory, Inc. (OCLI) (now Applied Solar Energy Corp. or
ASEC) performed an "Assessment of Present State.of-
the-Art Sawing Technology of Large Diameter ingots
for Solar Sheet Material" (Reference 25).

The OCLI approach was:

(1) To perform a series of slicing experiments
using multiple-blade slurry (MBS) saw slicing,
multiple-wire slurry (MWS) saw slicing, and ID
saw slicing to characterize the results in terms

of process variables, product yield and quality,
and process cost.

(2) To perform a cost analysis in terms of add-on
slicing cost, wafer cost, and cost per square
meter of usable sheet area.

(3) To assess the cost reduction potential for each
of the processes and to draw up conclusions
and recommendations. These are given,
unabridged, below.

The OCLI assessment did not as thoroughly
explore all the process variables for the wafering
methods (MBS, MWS, and ID) as did subsequent
specialist subcontractors to the Project (Norlin, Varian,
Solarex, Siltec, and Silicon Technology Corp.), nor did
it include the fixed-abrasive multiple wire technique
(Crystal Systems, Inc.).

The final conclusions and recommendations of
OCLI were:

(1) At present, Solar Array Manufacturing Industry
Costing Standards (SAMICS) cost assessment
indicated that the ID saw slicing is more favor-
able than the MBS saw and MWS saw tech-
niques. Its capability of automation, essential
for large-volume production, adds advantage
over the other two methods. Preliminary
results indicated the ID saw slicing technique
would meet the slicing goal in 1982 without
significant innovation of the slicing techniques.
Significant improvements in blade package,
slurry, wire, and machine capacity, however,
were needed to meet the goal for the MBS
saw and MWS saw techniques.
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(2)

(3)

(4)

The advantage of lower kerf loss by the MWS
saw slicing was obtained at the expense of an
add-on slicing cost higher than the ID and
MBS saw techniques.

Mechanical wafer parameters, such as thick-
ness variation, taper, bow and roughness,
were considerably better for wafers sliced
with both the ID and MWS saw than for those
with the MBS saw. Wafers sawed with the ID

saw (sliced at 2 in./min of cut rate) showed
slightly better parameters than those sliced
with the MWS saw.

The add-on slicing cost should be assessed
taking into account the specifications of thick-
ness, kerf loss, and diameter of the wafers to
be sliced. These are the major parameters
that strongly influence the overall slicing cost.
The surface damage generated by the slicing
methods should be investigated, and the elec-
trical power output that can be obtained from
the sliced wafer should be incorporated in the
overall assessment. In other words, a systems
approach is necessary to obtain optimum
slicing conditions.

feasibility of the MBS process to achieve Project
wafering goals. The contract required that wafering
runs be performed on the Varian 686 saw, the Meyer
and Berger GS-! saw, and the Hoffman PL-4 saw (Fig-
ure 18). Hoffman investigators were to perform a tech-
nical and economic evaluation of the MBS process to

determine what, if any, further technology develop-
ment effort was warranted.

Figure 18 Hoffman PL-4 Saw in Operation

(5) Preliminary results using thin ID blades were
not successful, mainly because of short life-
time of the blades. Development of ID blades
that will give low kerf loss with long life is
needed.

(6) To achieve further reduction of the cost of

wafering, the following areas of development of
ID saw machine design are suggested: improve-
ment in machine productivity, use of a rotating
crystal system, and development of techniques
to detect mechanical instability (or vibration) of
ID blades during the slicing process. These
instabilities result from the blade head,

inadequate blade tension, etc.

2. Multiple-Blade Slicing

In the advanced MBS process, flat steel blades
are drawn back and forth across the ingot, in a fashion
analogous to a knife slicing bread. Instead of using a
blade with fixed teeth, however, as does a bread knife,

the MBS process uses a suspension of abrasive parti-
cles in a carrier fluid that is poured over the flat steel
blades and ingot at the point of cutting.

a. Norlin Industries, Inc.: Free-Abrasive
Multiple-Blade Slurry Sawing Process. Two contracts
for MBS technology assessment and development
were awarded to the P.R. Hoffman Company, Division
of Norlin Industries.

The first contract, "Slicing of Single Crystal and
Polycrystalline Silicon Ingots Using Multi-Blade Saws,"
was a 6-month effort (January through July 1980). Its
goals were to qualify P.R. Hoffman as a Project tech-
nology development contractor and to evaluate the

The second contract, "Multiple-Blade Sawing of Sili-
con Ingot Inlo Sheet: Testing and Development," was
planned to be a 15-month effort, beginning in March
1981. It was terminated, however, after 10 months as
part of an overall Task redirection. The original work
plan, resulting from analysis of the first 6-month con-
tract, consisted of two phases:

(1) Phase 1, a 12-month effort, included design
ant fabrication of a microprocessor-controlled
workpiece feed mechanism; design and fabrica-
tion of a wafer lift-off mechanism; test and eval-
uation of slurry and abrasive recycling; test and
evaluation of new abrasive, vehicle, and blade
materials; a parametric process optimization

study; and definition of the process and design
parameters for the Phase 2 engineering design
task.

(2) The, objective of Phase 2 was to design a
higmthroughput (1000-blade) MBS saw that
would be capable of achieving the Project
throughput and cost goals of 1/2 wafer/min
(up to 15-cm-diameter), with a conversion ratio
of 1 m2tkg at an add-on cost of _<$14/m2
(1980 dollars).

Details of the program plans, the work performed,
and the results were documented by Norlin Industries,
Inc. (References 26 and 27).

f<ey Accomplishments. The key accom-
plishments of the Norlin/Hoffman MBS R&D efforts are:
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(1) MBS became better understood as a candi-

date wafering technology. Run process
variables and their impact on performance
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were evaluated, and areas were determined
that required attention to increase yield and
throughput and reduce cost. The latter included

reduction of consumable costs (perhaps through
recycling), optimization of process control and
process parameters, improved wafer handling
methods, and increased productivity per saw (a
1000-blade machine).

(2) Performances demonstrated individually, but not
simultaneously, included 400 wafers/run, 100 %
yield of 5-cm-diameter wafers, 20 wafers/cm of
5-cm-diameter wafers, and a 38/_m/min cut rate
in a 10-cm-diameter workpiece. The add-on cost

for state-of-the-art MBS wafering was projected
to be $104/m2 (1980 dollars). These achieve-
ments and this cost are to be compared with the
SAMICS goals of simultaneously achieving 455
10-cm-diameter slices, 25 slices/cm, 95 % yield,
and $13.70/m2 add-on cost (1980 dollars).

(3)

(4)

Because the contract was terminated before its

scheduled completion date, few of the deliver-
ables were completed. The microprocessor-
controlled workpiece feed mechanism was
neither designed nor built. A wafer lift-off mecha-
nism, including a heated stage for wafer mount-
ing and demounting and floating brushes to sup-
port and protect the wafers, was designed and
partially fabricated.

Considerable effort was spent to identify a
vehicle or abrasive recycling process using an
off-saw cyclone separation reclamation process.
By the termination of the effort, the system had
been designed, all the components had been
ordered, and some had been received. How-

ever, the process was not developed.

(5) Numerous slurry saw wafering tests were
performed to establish a baseline technology,
and to evaluate process variables such as
blade head speed, workpiece/blade force,
deliberate bounce, abrasive/vehicle ratios and

slurry volumes, etc. The purpose of these runs
was to indicate optimum process parameters
to incorporate into the Phase 2 saw design.
The trend of the results was not surprising
(increased blade head speed resulted in
higher cutting rates).

With the termination of these contracts, tech-
nology development of MBS came to a halt. None of
the new technologies under development is known to
have been carried forward by the industry and imple-
mented. Cost of MBS remains about the same as it

was in 1980. The process has had limited application
for silicon ingot wafering.

b. Varian Associates: Free-Abrasive Multiple-

Blade Slurry Sawing. In 1976, Varian Associates became
a subcontractor for a TD program with the goal to
develop a multiple-blade sawing technology that by
1986 could meet the FSA Project add-on cost goal of

$13/Wp. The program consisted of an experimental
wafering process parameter optimization phase; an
equipment design, fabrication, test and evaluation
phase; and a continuing economic assessment of the
technology. The work included parallel analysis of the
process of free-abrasive slicing and blade dynamics.
Details of the program can be found in the Final
Report from Varian Associates (Reference 28). A
summary of this comprehensive report is available in a
JPL publication (Reference 29).

The process parameter optimization program was
performed on a modified Varian 686 free-abrasive
multiple-blade saw. The saw included an improved
drive system and instrumentation for monitoring the
process. The experimental effort included a study of
various abrasive materials and abrasive vehicles,
parameter variations including ingot orientation, blade-
head speed, upside-down cutting, "loading," high
blade-head speed, ingot diameter, kerf width, and
abrasive size and slurry makeup. Analysis of the
results of these efforts included scanning electron
microscopic study of the abrasive particles before and
after cutting, the use of a dynamometer to measure
the vertical and horizontal components of force
occurring as a result of parameter variation during the
slicing experiments, a study of blade wear character-
istics (blade corrosion using a water-base slurry), and
etching and scanning electron microscope studies of
the damage in the silicon wafers incurred as a result of

cutting process parameter variations (Figure 19).

The design, construction, and testing of a
lO00-blade MBS saw (Figure 20) was planned as a
result of an economic analysis that indicated that the
higher throughput of a lO00-blade machine would be
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Figure 20. Varian Experimental lO00-Blade Saw

necessary to achieve the economic goals of the pro-
gram. The mass of a blade head strong enough to
hold 1000 blades in tension was so great that, to
achieve the blade-to-workpiece relative velocities
required for efficient cutting, Varian designed and built
a novel saw in which the workpiece itself reciprocated
instead of the blade head. The final design embodied
many improvements over state-of-the-art MBS tech-
nology. Unfortunately, in operation, the machine was
plagued with short lifetimes for its bearings and poor
and uneven slurry distribution problems. By the termi-
nation of the program in 1979, the saw had not
achieved its promise.

Varian analyses of multiple-blade sawing included
an economic analysis as well as a process analysis
and a blade analysis. Using the Improved Price Esti-
mation Guidelines (IPEG) method, the results of the
1979 cost analysis, involving a state-of-the-art sawing
technique, indicated that the 1979 technology scaled
up to yield 51,500 m2/year of wafers could do so at
the wafering value added cost of $1 28/m2. A 1986
cost reduction scenario, based on reasonable expecta-
tions of technology development, projected a value
added of $19.20/m2 for a factory scaled up to
51 8,000 m2/year. This projected figure still is larger
than the Project goal.

Process analysis included a study of the efficiency
of the cutting process and a study of geometric and
kinematic fundamentals of the slurry sawing process.
Analysis of the efficiency of the cutting process relates
both to the process of planar wear, which is affected
by abrasive geometry, load. hardness, and sliding dis-
tance, and to the nonplanar "wedging" process that

occurs in the wear trough. Workpiece "bounce" is a
critical process parameter in MBS wafering. Blade

analysis included a study of blade stability and deflec-
tion, the influence of pre-tipped blades, and the
process of blade buckling during the wafering process.
Because blade strength typically varies inversely with
the kerf, the reduction of both kerr loss and blade

buckling is a formidable problem. The statistics of a
blade package and probability of cumulative error in
blade and spacer stacking also were analyzed. The
probability of blade runout as a function of blade and
spacer tolerances and number of blades per package
has been calculated as well as the expected effects of
blade runout in wafer damage and breakage.

Observations and conclusions drawn from the

program are summarized in the Varian and JPL
reports, and the most significant are included below:

(1) General.

(a) MBS sawing easily may be used to produce
16.4 wafers/cm of 100-mm-diameter ingot
(02-mm blades and 0.4--mm spacers) or
17.9 wafers/cm of 100-ram-diameter ingot
(reducing blade thickness by 0.05 mm) at
commercially acceptable yields using
commercial technology.

(b) Careful use of commercial technology
allows cutting of 1 9.7 wafers/cm of

100-mm diameter ingot (0.15-ram-thick
blades and 0.35-mm spacers) at or near
commercially acceptable yields.

(c) On an experimental basis, 21.9 wafers/cm
of 100-mm-diameter ingot have been cut
successfully.

(d) Crystal orientation and polycrystatlinity
have no effect on the slurry-sawing process.

(2) Slurry Vehicle.

(a) The most important factor in oil-based
slurry vehicle selection is "lubricity," a
parameter that characterizes the drag
force encountered with small clearances.

(b) Suspension power is not important as
tong as mechanical stirring allows delivery
of the abrasive to the cutting interface.

(c) Extensive (>80%) recycling of non-
suspension vehicles is easy and practical.

(3) Abrasive.

(a) Boron carbide and zirconia-aluminum
oxide abrasive are not suitable for eco-

nomic and technical reasons, respectively.
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(b) For an abrasive, #600 silicon carbide (as
sized by Micro Abrasives Corp.: 10 to
30 #m diameter, average) is the best cost-
efficiency trade-off.

(c) Abrasive is most easily recycled using a
centrifuge.

(4) Wafers.

Removal of 10 to 15 #m/side from a wafer by
etching is sufficient to remove saw-induced damage.

c. JPL In-House Blade Evaluation. For the

M BS wafering technology, potential cost savings were
considerable for the use of a water-base slurry instead
of the standard polishing-cutting oil vehicle. Significant
failures of high-carbon-steel blades were observed,
however, using a water-based slurry during silicon
wafering. Mechanical testing blades in appropriate
environments showed that failures were due to stress
corrosion.

To determine the feasibility of using corrosion
inhibitors in water-base MBS wafering, a specifically

designed fatigue test was carried out involving 1095
steel blades operating in distilled water in which
various corrosion inhibitors had been dissolved.
Results indicated several corrosion inhibitors had

significant potential for use in a water-based MBS
operation. Blade samples tested in these specific
corrosion inhibitor solutions were found to exhibit

considerably greater fatigue life than blades tested in
cutting oil (Reference 30).

Amorphous metal ribbons manufactured by Allied
Chemical Company were evaluated to determine the
feasibility of their use for MBS ingot wafering. Their
mechanical properties and corrosion resistance were
reported to be reasonable. A series of material
characterization and fatigue tests, carried out at JPL,
indicated that these materials have greater hardness
and wear resistance than high-carbon-steel blades.
Because these materials lacked plasticity, however,
they seemed to be more susceptible to notching,
resulting in fracture.

3. Multiple-Wire Slicing

MWS is achieved by reciprocally moving one
continuous wire over the workpiece at many parallel
locations, or by moving several parallel wires
simultaneously over the workpiece. Cutting may be
accomplished by abrasive particles fixed to the wires
or by a slurry of abrasive particles in a carrier fluid.
MWS resembles MBS except that wires rather than
blades are used. This results in less damage to the
wafer surface, but cutting rates are slower.

a. Solarex Corp. Solarex Corp. performed a

1 -year (July 1978 to July 1979) "Evaluation of the
Technical Feasibility and Effective Cost of Various

Wafer Thicknesses for the Manufacture of Solar Cells."

The work is reported in detail in the final report (Refer-

ence 31). This study was essentially a test in a produc-
tion environment of the Yasunaga Model YQ-100 free-
abrasive multiple-wire saw.

The Yasunaga YQ-100 saw uses a single continu-
ous wire, fed from one spool around a three-roller
loom to a take-up spool. The spacing of the wires on
the loom (pitch) is determined by the spacing of
grooves cut into the rollers. The wire feeds back and
forth between the spools, incrementally advancing
toward the take-up spool on each cycle. The wire
advances at a rate high enough to prevent its wearing
too thin and breaking under the tension. Constant ten-
sion is maintained on the wires. As the loom drops
down onto the workpiece, cutting is effected by an
abrasive slurry pumped onto the wires and workpiece.
Wafer thickness and kerr loss are determined by roller
pitch, wire diameter, and abrasive size. Cutting rates
and wafer quality are determined to a great extent by
the load applied between the workpiece and the wires.
Process cost drivers include the usage rate of wire
and abrasive, cutting rates, and labor. The evaluation
effort included a series of experiments varying such
parameters as pitch, wire diameter, and abrasive
particle size wafering, characterization of the product
wafers including depth of damage, and evaluation of
the practicality of module fabrication using thin wafers.

A parametric wafering study was performed using
this saw. Low kerf losses, low wafer surface damage,
and high wafer/inch yields were achieved. Kerr loss as
low as 0.165 mm was shown to be possible, less than
half observed for present state-of-the-art techniques. No
appreciable damage was observed in wafers cut with
5 to 10 #m abrasives, although the cutting rate was
unacceptably slow. Damage as little as 15 to 10 _.m
was observed using 30-#m abrasive particles. Using
the YQ-100, a cutting yield of 25 wafers per centi-
meter was demonstrated. Thirty-three 0.13-mm-thick
wafers per centimeter seemed feasible. Productivity
was reduced, however, as numerous problems were
encountered that originated with the state of the art of
the machine. Problems included ruptured slurry lines,
catastrophic failure of the wire spools, unwieldy loading
mechanisms, bearing failures, and limited workpiece
size. Work including spool winding and wafer clean-up
was surprisingly labor-intensive. Wire breakage was
common, and wire usage was unacceptably high. Some
re-use processing, perhaps plating-up the used wire,
would be required to make the process economically
acceptable.

Cells were fabricated from wafers sliced with the
MWS saw, and two modules were assembled from
these cells. The performance of the cells, as expected,
varied with the amount of wafering damage removed.
The advantages of flexible modules containing thin
cells was analyzed and the results are given in the
Final Report along with current-voltage (I-V) curves of
the modules.
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Theconclusionsandrecommendationsofthe
Solarexteamaresummarizedbelow:

(1)

(2)

Numerousproblemswereexperiencedwith
wiresawequipment,causingtheprogramto
fallbehindschedule.Thesawoperationwas
substantiallymorelabor-intensivethan
anticipated.

Wafercharacterizationofsawrunshas
establishedextremesoftechnicalpossibility
withthesaw.Itwasconcludedthatthinwire
(0.08-0.1mm)cannotbeusedpresentlytocut
largequantitiesofwafers.At theotherendof
thespectrum,thickwiresdonotincrease
reliabilityoverthoseofmediumgaugeandare
notcosteffective.

(3) Thethinnestwafersthatseempracticaltosaw
are0.1-0.2mmthick.Togetathicknessof
2 mils,theslicedwafersrequiremorechem-
icaletchingthanwouldbeneededjustto
removethesurfacedamagefromthesaw.
Thesawedwafers,however,arewithin12#m
of beingabsolutelyflat(convexlensshape).
Thisisnecessaryforetchingto 2milsthick-
ness.Large-diameter(7.5-cm)ultrathinwafers
wereetcheddownto50_+12#m.

(4) Themaximumnumberof wafers(rollerpitch)
is notestablished.Estimatedoptimumsare
achievedwith0.15-mmwireand0.4mmpitch
andvariousgrits.Thisyieldsaweightpercent
yieldoffrom50.3to 58,andanareayieldof
1.08m2/kg.The0.3-mmtoolmayworkwith
sufficientlyhighreliabilitytogiveanareayield
of 1.43m2/kg.

(5) Resultsofthecellprocessingofwaferspro-
ducedinsawingrunsindicatethatmuchless
etchingisrequiredtoremovesawdamagethan
wasanticipated.Thewafersurfaceisgood.It is
flat,notpitted,withveryinfrequentwiremarks.

(6) Recommendedwaferingsystemmodifications
includeamuchimprovedconstanttorquemotor
andcontrollerontherespoolingsystem,steel
ratherthancastaluminumwirespools,and
thedesignandfabricationofa0.3mmroller
groovingbitthatwillpermithighwaferarea
perkilogramsawing.A significantmodification
is thebuildingofa constantloadingdevicefor
thesawitself.

(7) Laborloadingforasinglesawingrunbya
competent,experiencedtechnicianpresently
breaksdowntonearly$0.80perwaferfor
laboralone.Evenat200wafers/run,it isstill
> $030 Additionalengineeringdevelopmenton
thesawanditsefficientoperationisnecessary
tomaketheoperationlesslabor-intensive.

b. Crystal Systems, Inc.: Multiple-Wire
Slicing�Fixed-Abrasive Slicing Technique. A technol-
ogy development program on a multiple-wire FAST
was supported by the FSA Project at CSl, the inno-
vators of the technique. The work and results are
reported in detail in the Final Reports of Phases 1
through 4 of the contract (see References 15, 16, and
17). The features of the latest embodiment of the
process include a low-mass, high-speed reciprocating
blade head. a multiple-wire blade pack containing
small-diameter, high-tensile-strength wires with fixed
diamond abrasi,ve only on the cutting surface, and a
rocking ingot mount (Figure 21 ). The potential advan-
tages of such a system include low equipment, labor

Silicon

Rocking Mechanism
Feed

Mechanism

Grooved Rollers

Reci

Bladehead

Figure 21. Crystal Systems, Inc. FAST Muftiwire Saw
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and expendable costs,high throughput and material..

utilization, and low wafer-surface damage.

The program included machine and wire develop-
ment efforts and testing. In the course of the program,
two generations of FAST slicers were built. The final
configuration employed a smooth granite block on
which the reciprocating frame, the workpiece carriage,
and the vertical feed mechanism were all mounted and

precisely aligned. The wire-pack frame was designed
to accommodate workpieces up to 30 cm in length and
15 cm in diameter. The experimental systems employed
a counterweight to balance the motion of the blade head.
In a production machine, this would be accomplished by
a second blade head. A two-blade head configuration
was used in the cost analysis of the process. Linear
blade-head speeds up to 2.2 m/s were successfully
achieved in the cutting tests (versus 0.33 to 0.43 m/s

typical speeds in the MBS systems).

The wire development effort included evaluation
of abrasive-impregnated and plated-wire fabrication
methods and testing of the wires. The impregnation
study variables were wire material (steel and tungsten),
wire diameter (3, 4, and 5 mils), copper-plated wire
sheath thickness (7.5 to 15.5 #m), diamond abrasive size
(15, 30, 45, and 60 #m) and electroless nickel plating.
The electroplating of diamonds onto wires was studied
using as variables: wire material (steel and tungsten),
wire preparation (nickel flashing on tungsten and
postplating bake of steel), abrasive size and sized
distribution (22 to 60/zm diamonds and combinations),
nickel plating thickness, and distribution of diamonds on
the wire (entire circumference, 60 deg V-groove, and
bottom surface only). A wire plating facility was set up
by CSl for this work. Natural and synthetic diamonds
were compared; natural diamonds were observed to cut
more effectively than the synthetics, perhaps because of
their "blocky" morphology.

A test plan was used to evaluate the various wires
and to identify wire failure mechanisms. Once the
initial wire technology development problems for elec-
troplated and impregnated wires were overcome, the
wires could be directly compared in slicing runs.
Results of the comparison showed the electroplated
wires to yield higher cutting rates and yields and
longer service lifetimes than the impregnated wires.
The latter were dropped to concentrate on developing
the electroplating process. Diamond pull-out was the
major failure mechanism of both types of wire, but it
occurred at a much higher rate in the impregnated
wires.

An economic analysis of the potential add-on cost
for the FAST process was performed by CSl using the
IPEG equation. The respective projected results, optimis-
tic and conservative, were $5.90 and $13.13/m2, versus

the Project goal of about $18/m2. Each of the process
goals required to meet the projected costs (0.14 mm/min
cutting rate, 25 slices/cm, and 90 to 95% yield) was
achieved individually. A key requirement, 5 to 10 slices
per wire, however, was not achieved, nor were the
above achieved simultaneously.

'F_ "_7 "-;

Key Accomplishments. The key accom-
plishments of the CSl multiple-wire fixed-abrasive R&D
are:

(1) Achieved the slicing of 25 wafers/cm on a
10-cm-diameter silicon ingot with greater than
99% yield (222 out of a possible 224 wafers)
for 0.249-mm-thick wafers and 0.151 mm kerf

(Figure 22).

(2) Achieved the slicing of 19 wafers/cm on a
1 5-cm-diameter workpiece.

(3) Attained an average slicing rate of 0.14 mm/min
on a 10-cm-diameter ingot.

(4) Three 10-cm-diameter ingots were sliced
using a single wire pack.

Figure 22. Slicing of Silicon Ingot by FAST

Present Status. Since the termination of

FSA funding, process development has continued at
CSI supported by internal and DARPA funds.

c. JPL In-House Evaluation of Multiple-Wire

Slurry Sawing. JPL also evaluated a new multiple-wire
slurry-type sawing machine, Model YQ-100, manufac-
tured by Yasunaga Engineering Company of Japan.
(Results of a similar study by Solarex are reported in
Section III.B3.a.). The new saw was claimed to be capa-
ble of slicing workpieces as large as 10 x 10 x 10 cm
into 250 wafers simultaneously with low ken' loss.

A series of slicing demonstrations was made with
the MWS saw to evaluate its silicon ingot wafering
capabilities (Reference 32). Results revealed that
sawing can provide 1,05 m2/kg of usable wafer area
from an ingot (e g., kerr width 0.1 35 mm and wafer
thickness 0.265 ram). Satisfactory surface qualities
and excellent yield of silicon wafers were found. The
add-on cost of producing wafers from this saw is high,
primarily because the Yasunaga saw uses a large
quantity of wire. The add-on cost must be significantly
reduced, perhaps by extending the wire life and/or by
reuse of properly plated wire to restore the diameter.
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a. Siltec Corp.: Enhanced/O Slicing
Technology for Silicon Ingots. The objective of this
program, started in 1979, was to develop processes
capable of significantly increasing the number of
usable ingot slices per unit length as compared to
industry practice. This was to be achieved through
reduction of both kerr and slice thickness. To attain

this objective, a combination of three key technologies
was investigated: ingot rotation with minimum exposed
blade area, dynamic cutting-edge control (Figure 23),
and _he use of prefabricated bJade inserts {Figure 24).
The program called for demonstrating the feasibility of
low-cost slicing with a kerr loss of between 127 and
178 #m, with a combined kerr and slice thickness of
less than 406/zm (25 slices/cm). Results of the
program are presented in the contract final report
(Reference 33).

Figure 23. Schematic of Closed-Loop Blade Position
Control System

Figure 24. Perspective Wew of Prefabricated Insert
Blade

A commercially available Siltec saw (Figure 25)
was equipped with a programmable ingot advance/
rotation unit and a closed-loop cutting edge position

control system. Ingot rotation had previously been
projected to be useful during a JPL in-house program.
An obvious advantage with this approach is the much-
reduced head size because the ingot travel distance is

Figure 25. Commercial Siltec ID Saw

reduced to hair that for the case of no rotation. Experi-
mentation with ingot rotation revealed that severe
limitations on productivity were imposed because of
the combination of the anisotropic material character
of the monocrystalline silicon and ingot rotation during
cutting. Cutting edge position control, with low kerr
blades, proved to be very effective through reduction
of the deflection by one order of magnitude. This
contributed significantly to kerr reduction.

Closed-loop control of blade deflection proved to
be essential for reduced kerr and slice breakage, It
also gave valuable information as to the state of the
cutting edge profile and the tension of the blade core
material.

In the area of blade development, the use of

prefabricated blade inserts, consisting of nickel rings
impregnated with diamonds, was investigated. This
investigation was terminated prior to its completion,
and no results were obtained,

An alternative method of blade construction was

investigated. Through a precision etch process, mate-
rial was symmetrically removed on both sides of the
blade near the cutting edge. The nickel/diamond cut-
ting material then was applied to this region. This con-
figuration permitted low-kerr slicing (achieving a cut-
ling edge width of 127 #m), but further refinement of
the process is necessary to achieve greater blade
lifetime.
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Two beryllium copper blades were designed, con-
structed, and tested. This material was selected for its
increased ductility. Performance of the blades seemed
consistent, exhibiting very low natural deflection, differ-
ential expansion, and loaded deflection. Slice bow, how-
ever, was about twice that of stainless steel because,
with beryllium copper (a softer material), resistance to
blade deflection was less. This disadvantage, together
with the fact that slicing speeds with the beryllium copper
blades had to be reduced, led to discontinuance of this
approach.

Key Accomplishments. The key accom-
plishments of Siltec Corp. R&D are:

(1) Low blade life and low productivity prevented
ingot rotation from being an economical solu-
tion to Iow-kerf slicing of silicon ingots.

(2) Dynamic cutting-edge control is an important
element to reduce kerf.

b. Silicon Technology Corp.: ID Wafering of
Silicon for Solar Cells. Silicon Technology Corp. (STC)
performed an empirical parametric study of ID wafer-
ing on 15-cm-diameter and 10-cm-square ingots
(References 34 and 35). Specifically, the goals of the
work were to achieve 17 to 18 wafers per centimeter
length from 15-cm-diameter ingots, and 25 wafers per
centimeter from 10-cm circular or square ingots.
Improved throughput rate was a secondary goal of the
contract.

Both plunge cutting (straight through the ingot) and
rotational cutting were used in the study. The standard
22-in.- (56-cm-) diameter ID saw (Figure 26) was used
for all slicing operations except plunge-cutting the
15-cm round ingots, for which a prototype 32-in
(81.3-cm) saw, capable of slicing 20-cm ingots, was
employed. Both 15-and 10-cm round ingots were
rotated, while slicing, but the 10-cm square ingots
were plunge-cut only.

...... s ii!

Figure 26. Microprocessor-Controlled ID Saw Made
by Silicon Technology Corp.

Results and accomplishments of the study are as
follows:

(1) Plunge slicing of 10-cm-square, fine-grained
polycrystalline material achieved >90% yield
with 23 to 26 thin wafers/cm (0.13 to 0.15 mm
thick with 0.28-mm kerf) at 2.5 cm/min plunge
rate, or thick wafers (0.25 to 0.3 mm) at
6.3 cm/min.

(2) Plunge slicing of 15-cm-diameter ingots
achieved < 85 % yield with 16 slices/cm at
3.8 cm/min plunge rate.

(3) Rotating the ingots produced < 21 wafers/cm
at acceptable yields (0.23-mm wafers,
0.24-mm kerf) from 10-cm-diameter ingots,
but unacceptable breakage of the 1 5-cm-
diameter material even with very thick
(0.5-mm) slices.

(4) IPEG analysis indicated $25 to $42/m2 add-on

costs for the plunge-cutting options studied,
compared to the cost goal allocation of
$13.70/m2 (1980 dollars).

Present Status. Although substantial auto-
mation of the ID wafering process had been imple-
mented since the termination of wafering technology
development in the FSA Project, process cost and

productivity have not improved appreciably since
1 981. Blade technology, the key to kerr reduction, is
unchanged.

c. JPL Modeling of ID Sawing. The efficient

use of silicon was critical for the FSA Project. A
variety of slicing techniques were investigated to
minimize wafer thickness and kerf. It would be more

cost effective to produce larger-diameter silicon Cz
solar cells. It was anticipated, however, that greater
thicKness would be necessary for larger-diameter
wafers to withstand wafering, cell processing, and
handling. No means of quantifying this anticipated
thickness increase was available to provide standards
or guidelines for cell manufacturers.

Analytical models were derived by using fracture
mechanics analysis. These models were used as a
guideline to estimate minimum silicon wafer thickness

versus diameter requirement for ID sawing (Refer-
ences 36 and 37) and rotated ingot ID sawing (Refer-
ences 38 and 39) in terms of wafer surface damage and
sawing parameters (cutting rate and blade vibration).
Important controlling factors for each sawing technique
were suggested to produce minimum thickness wafers.

The model also indicated the minimum wafer side sup-
port required for ID sawing for various wafer thicknesses
at any diameter. The fracture mechanics analysis of
rotated-ingot ID sawing predicted that a minimum wafer
thickness was about 0.15 to 0.2 mm for conventional

sizes of rotated-ingot wafering. Fractures through the
thickness of the wafer rather than through the center
core were found to limit the minimum wafer thickness.
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Themodelsuggestedthatfor< 111> siliconingots,the
useofavacuumchuckonthewafersurfacetoenhance
cleavagefractureofthecentersupportcorehaspotential
forreducingminimumwaferthickness.

5. SurfacePropertyModificationofSiliconbyFluid
Absorption:UniversityofIllinoisatChicago.

Waferingofsilicongenerallyinvolvesabrasivewear
bytherubbingofdiamond-impregnatedwheelsorwires.
A fluidenvironmentnormallyisusedtocootthecontact
regionandcarryawaythedebris.TheUniversityof
IllinoisatChicago(UIC)simulatedthewaferingprocess
byusingtheirownslow-speedandhigh-speedscratch-
ingapparatuses.Theyalsoperformedindentationtests.
Theresultsoftheseexperimentswerecomparedwitha
spacechargemodel.
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a. Slow-Speed Scratching Test. Two slow-
speed scratching test apparatuses were constructed. A
circular, multiple-scratch test facility was used to gener-
ate grooves in Cz silicon, and the cross-sectional area of
the grooves was examined and measured in the scan-
ning electron microscope (References 40 and 41).
Grooves were produced when the silicon surface was
immersed in ethanol, methanol, acetone, and deionized
water. Radical differences in the groove surface morphol-

ogy were observed as a function of fluid environment.
The groove cross-sectional area formed in ethanol was
significantly larger than that formed in the other fluids.
Figure 27 demonstrates that, for a given dead-weight
load on the scratching diamond, the groove area formed
in ethanol is twice as large as the groove formed in
deionized water. These results have also been disclosed

in a patent apDlication and a NASA Tech Brief. The
dielectric properties of the fluid were found to be corre-
lated with the wear rate, which was able to be predicted

assuming that the hardness of the silicon is known.
These results have shown that the load, dielectric con-
stant, and hardness are critical parameters that influence
the wear rate and surface damage (Reference 42).

An apparatus used to form linear scratches also was
constructed. A 0ead-weighted diamond, instrumented
with strain gauges, scratches a fixed Cz silicon wafer
surface. The groove depth and width, and the damage
beneath the groove, depend on the load and fluid used in
the experimenL Figure 28 shows scanning electron
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microscope (SEM) micrographs of the surface morphol-
ogy of a sJngJe scratch and 10 scratches formed in etha-

nol, methanol, deionized water, and air. The. scratched
surface morphology, debris, dist!tbutbn and size, and the

scratch width depend on th,_,ftui.d in,cor'_tact with the
silicon surface during the test.

Four-point, bend-fracture, stress measurements were
conducted on these linear grooves, and the tensile resid-
ual stresses corresponding to the subsurface damage
were obtained (Reference 43). The residual stresses are
15.6 and 99 MN/m2 associated with the damage gener-
ated in deionized water and ethanol, respectively.

b. Indentation Tests. Vickers diamond inden-

tation tests were carried out both at room temperature
in fluids and at high temperatures in a laboratory air
environment. The indent diagonals were used to obtain
hardness as a function of the dielectric constant of the

fluids (Reference 44). These data showed that fluids and
loads infbence the hardness measurement. I_ the indents

are etched in a dilute Sirtl solution, then (in addition to the
indent diagonals) a damage zone is visible along with
median and radial cracks. Figure 29 shows the variation
of the damage zone morphology and size with surface
orientation and bulk doping for tests in sodium iodide at
room temperature

The indentation results showed that plastic
deformation is generated at loads below 0.98N and
that cracks predominate at Joads greater than 0.98N.

c. High-Speed Cutting. A high-speed, high-
temperature cutting facility was constructed to accom-
plish cutting at a precise feed rate, depth of cut, and
fluid environment. The major results of this study were
that the surface morphology and debris size analysis
indicated the deformation mode. The average debris

(1OO) (111)

.L.
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Figure 29.

10 #m

SEM Micrographs of Indentations (P 0.4.. N, Sirtl Etch for 25 s)
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size decreased from 1.7 to 1.0/zm when the tempera-
ture is raised to 100°C for cuts made in air. At room

temperature, the average debris size increased from
1.7 to 5.6 t_m for cuts made in air and ethanol,
respectively.

The surface morphology of the groove also varied
with fluid and temperature. As temperature increased,
the ploughed regions broadened by a factor of two.

d. Deformation Model. The damage formed
during scratching and/or indentation was modeled by
dislocations propagating in the space charge field of
the silicon. The surface of the silicon was described
by a limited number of surface sites that may interact
with fluids or adsorbates. Because the surface sites

are limited, they may not sustain the surface charge
necessary for equilibrium, and the extent of the space
charge region may vary with the surface site density
and energy as well as the electrochemical potential.
The Debye length, which may be calculated by this
model, is related to the damage zone (generated by
indentation) because dislocations must propagate in
the space charge field.

C. SUMMARY

Nine groups engaged in R&D programs to advance
the technology of silicon ingot wafering. Their work
included evaluation and development programs for stan-
dard techniques (ID saws and multiblade saws), evalua-
tion and development of novel and new wafering tech-
nologies (including a free-abrasive wire saw), and studies
aimed at achieving a basic understanding of the
mechanisms of cutting silicon.

OCLI assessed the state of the art of the tech-

nology available for sawing large-diameter ingots by
performing a series of slicing experiments using
various wafering methods.

Under two separate contracts, Nortin Industries
(Hoffman Division) conducted technology assessment
and development of the free-abrasive, MBS sawing
process. As a result, MBS became better understood
as a candidate wafering technology. The design and
development of a 1000-blade saw was terminated
early because of redirection of the FSA Project.

Varian conducted an effort dealing with multiple-
blade saw technology, including construction of a
1000-blade saw and economic analysis of MBS tech-
nology. Operation of the saw was plagued by problems,
and the saw did not achieve its expected performance.

Solarex performed a parametric wafering study
that essentially was a test of a Yasunaga free-abrasive,
multiple-wire saw in a production environment. Wafer-
ing tests were made over ranges of operating param-
eters, the product wafers were characterized (includ-
ing determination of the depth of damage), and the
practicality of module fabrication using thin wafers was
evaluated.

CSI developed the FAST wafering process that
employed a saw having diamond-impregnated wires.
The ability to slice 25 wafers/cm from a 10-cm-diameter
ingot with greater than 99% yield was demonstrated.
The FAST saw also was able to slice 19 wafers/cm from

15-cm-diameter ingots, although the yield was low.

JPL conducted studies that included a MWS saw

development, evaluation of blades in support of
multiple-blade sawing, and analytical modeling of ID
sawing and rotated-ingot ID sawing techniques.

Siltec pursued a program to enhance ID sawing
technology by achieving a significant increase in the
number of usable slices per unit length of ingot as
compared to industry practice. Extensive experimenta-
tion was performed with ingot rotation, but limitations
to the technique remained. The effectiveness of a
cutting-edge position control was demonstrated.

STC performed an empirical parametric study of
ID wafering on 15-cm-diameter and 10-cm-square
cross-section ingots. Goals of the program were to
achieve certain numbers of wafers of specified
thickness per unit length for cylindrical and square
ingots, and to obtain improved throughput.

UIC conducted a program to develop an
understanding of the basic mechanisms of the
deformation of silicon when silicon is cut in the

presence of lubricants. UIC also developed a
nondestructive measurement technique for residual
stresses in thin, flat-sheet silicon.

35





SECTION IV

Ribbon GroWth

A. INTRODUCTION

Silicon sheet conventionally is produced by sawing
Cz-grown ingots into individual wafers. This process,
developed for the semiconductor industry, yields silicon
wafers of excellent quality, but of high cost. An obvious
way to circumvent the problems inherent in the ingot-to-
wafer technology is to grow silicon in sheet form of the
desired thickness directly from the melt. From the start of
the FSA Project, development of such silicon ribbon
growth processes received considerable emphasis. Most
approaches required feasibility demonstration, because
the specific technique involved had not been used for
silicon if at all.

At the beginning of the FSA Project, many sheet-
growth concept studies were supported, especially
those involving ribbon. Periodic reviews reduced the
number of options to the most promising few, but from
time to time newly proposed concepts were considered
and supported. The ribbon technologies that received the
the greatest support over the life of the Project were:

(1) Edge-supported film-fed growth (EFG), at Mobil
Tyco.

(2) Capillary action shaping technique, at Inter-
national Business Machines (IBM).

(3) Dendritic web, at University of South Carolina,
Westinghouse, and JPL.

(4) Inverted Stepanov, at RCA Laboratories.

(5) Ribbon4o-ribbon (RTR) laser zone crystallization,
at Motorola/Solavolt.

(6) Low-angle silicon sheet (LASS) process, at
Energy Materials Corp.

The EFG, CAST, dendritic web, RTR, and inverted
Stepanov processes all involve vertical or near-vertical
growth where heat removal is symmetrical or nearly so.
The LASS process, however, involves asymmetrical heat
removal.

In early 1982, almost all work on ingot technologies
was terminated in accordance with DOE guidelines, and
the development of sheet growth processes was concen-
trated into two ribbon efforts deemed to offer the highest
probabilities of success: the dendritic web process at
Westinghouse Electric Corp., and the EFG process at
Mobil Tyco Solar Energy Corp., now known as Mobil
Solar Energy Corp. (MSEC). At the same time, emphasis
and support was placed upon understanding and control-
ling the fundamental limitations to ribbon technology.

In the use of these ribbon processes, two factors
have been, and continue to be the limitations to meeting

the DOE module price goal of $0.50/Wp.

(1) Generation of stresses and consequent strain
as ribbon growth rate is increased to achieve
the required throughput.

(2) Formation of defect arrays and structures that
act to limit solar cell conversion efficiencies.

Two Supporting Studies contracts were also
awarded: solid/liquid interface studies at Solar Energy
Research Institute (SERI), and analysis of high-speed
growth of silicon ribbon in inclined-meniscus configura-
tions at Massachusetts Institute of Technology (MIT). The
SERI program is covered in Section Vl, and the MIT
effort is described in Section VII.

Two other ribbon growth techniques that were sup-
ported by DOE (edge-supported pulling at A.D. Little and
edge-supported ribbon at SERI) are not covered in this
report because they were not part of the FSA program.

B. IMPLEMENTATION

1. Shaped Ribbon Growth

a. Mobil Solar Energy Corp.: Edge-Defined
Film-Fed Growth, Process Development. In the EFG

process, silicon ribbon is pulled from the top of a die
through which molten silicon is fed by capillary action
(Figure 30). The molten silicon wets the top of the die
and extends out to the outer edge of the die top. Thus,
the cross-sectional shape of the ribbon pulled from the
molten silicon is defined by the shape of the top of the
die.

In 1975, in response to the general sheet growth
Request for Proposal ('RFP), Tyco Laboratories, Inc.
proposed an effort to develop the EFG process to pro-
duce low-cost silicon sheet. The EFG process origi-
nally had been developed for growing sapphire rib-
bons, and some preliminary work involving silicon had
been done under National Science Foundation (NSF)
and NASA support prior to the RFP. This EFG tech-
nology development continued to the end of the FSA
Project, and still continues under corporate support.
The EFG technology development supported by the
FSA Project focused entirely on ribbon quality and
cost (References 45 and 46). Parallel elements of
development involving cell processing and module
preparation were entirely supported by MSEC. For this
reason, information concerning specific cell
processing procedures is not available.

t_O_ PAC_ _ HOT FILM_'D
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Schematic of Edge-Defined Film-Fed
Growth Process for Silicon Ribbons

Early economic analysis established the through-
put requirements for cost-effective ribbon to be about
200 cm2/min total of ribbon per machine. Evaluation
of the technology suggested multiple ribbons and indi-
vidual ribbon growth speeds of 40 to 50 cm2/min. Dur-
ing the 11 -year course of the program, the technical
approach to the achievement of this throughput was
modified, but the technology goal remained.

Work during the early years (1975 to 1977)
focused largely on the establishment of growth condi-
tions, materials of construction, melt replenishment
methods, and other technology requirements neces-
sary to achieve reproducible ribbon growth. Tech-
nology developments included the introduction of both
cooled thermal elements near the growth interface to
extract the heat of fusion, and a controlled gradient
exit furnace needed to reduce stresses introduced by
the rapid cooling from the cold elements. Many early
ribbons, produced through the use of only the cold
element, literally exploded from stress.

During the middle years of the technology develop-
ment (1978 to 1981), major emphasis was placed on the
design, development, and operation of several multiple-
ribbon growth machines. Early designs were directed at
ribbon widths of 7.5 cm and growth speeds approaching
7.5 cm/min, but it ultimately was concluded that these
speeds were unreasonable because of the inability to con-
trol stress of the ribbons. Detailed technical goals were
established for four ribbons 10 cm wide at 4.5 cm/min.

A photograph of a multiple-ribbon growth machine ulti-
mately developed is shown in Figure 31. By 1981, pre-
liminary operating characteristics of the machine had
been determined for growing three lO-cm-wide ribbons.
Growth speeds as high as 3-1/2 cm/min were achieved
as compared to the required 4-1/2 cm/min, with duty
cycles of about half that required. This corresponds to
about 30% of the area growth rate required. Even at
these speeds, the primary problem was the development
of stress during ribbon growth. In contrast, lower speed
growth could be demonstrated at high duty cycle (but not
continuously} for periods approaching 1 week. Late in
1981, the FSA Project was redirected from demonstra-
tion of technology development to research involving the
understanding of the more fundamental problems in
ribbon growth, This resulted in termination of FSA
support for multiple ribbon development.

Figure 3I. Multiple-Ribbon Furnace for Edge-Defined
Film-Fed Growth

However, under support of MSEC, both the latter
stages of mu!tiple ribbon development and a parallel
effort of a new form were carried out 1o produce sili-
con ribbons. This consisted of growth of a closed form
of ribbon having nine sides (nonagon) with each side
being slightly greater than 5 cm across. The nonagon
was cut into nine 5-cm-wide strips. This technique is
capable of producing heady 150 cm2/min, at pull
speeds of about 3 cm/min. This production rate
amounts to 090 m2/h, nearly equaling the FSA Tech-
nology Readiness goal of 0.96 m2/h.
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Also,duringthisprogram'smiddleyears,many
associatedtechnologiesweredevelopedthatare
importanttothepresentandfuturedevelopmentof
ribbongrowth.Anautomatedribbongrowthcontrol
systemwasdesignedanddeveloped.Itusesoptical
monitoringoftheribbonduringgrowthtocontrolthermal
elementsin thegrowthsystemtomaintaindynamic
stability.Auniqueanamorphictelevisioncamerawas
developedthatprovidedaheight-to-widthmagnification
ratioof40to1.Thesystemdemonstratedtheabilityto
controlribbongrowthforperiodsoftensofhourswithout
operatorintervention.

A specialcarbon-siliconthermocouplewasdevel-
opedtomapthetemperaturedistributioninsilicon
ribbons.Carbonthreadswereattachedtothesilicon
ribbonbymeansof graphitecementandtheoutputs
werereadwithasensitivevoltmeter.

Considerableeffortwasexpendedinevaluationof
theeffectofoxygenandcarbononsolarcellperform-
ance.Table5 isasummaryofearlycellresultsin
thesestudies.Althoughthedetailedmechanismfor
theroleofcarbonandoxygeninsiliconphotovoltaics
remainsunclearat thistime,itsimportancecannotbe
challenged.

Theabilitytoslantthe liquid-solid interface by the
position of the EFG die tops was demonstrated to be
useful in moving silicon carbide precipitates to the last
material to crystallize. The side containing these
precipitates then could be placed at the back of the
solar cell to prevent junction penetration.

A major discovery concerning the growth of EFG
ribbon was the existence of an "equilibrium defect"
structure that developed after a period of growth. The
structure exhibited a < 110 > growth surface with a
< 112 > growth direction and had a large quantity of

twins nearly parallel to the growth direction and per-
pendicular to the ribbon surfaces. Neither the mecha-
nism for the formation of these twins nor their role in

growth or stress is fully understood. It has been
observed that large quantities of closely spaced twins
(< 10 #m) are frequently free of dislocation and not
harmful to solar cell performance. In contrast, regions
without twins often exhibit higher dislocation density
and reduced cell efficiency. Seeding of this "equilib-
rium defect" structure has been considered and is

sometimes effective ('Reference 47). The generation of
silicon carbide particles and other structure-perturbing
elements during growth, however, produces continu-
ous variations in the structure, and the equilibrium
structure is essentially independent of the seed struc-
ture. This equilibrium structure is fundamental to semi-
conductors and has been observed in other ribbon

growth approaches described in this report (RTR and
SQC) and in other semiconductors (laser-recrystallized
GaAs).

In 1981, with reorientation of the FSA Project
toward research concerning the limitations of ribbon
growth, support for the MSEC TD was terminated, and
contract effort focused largely on problems of mechani-
cal strain and its understanding and control. Studies
included heat flow modeling, growth cartridge design
and construction, and evaluation of macroscopic
structural and electrical characteristics of grown ribbon.
These studies have contributed greatly to the under-
standing of stress limitations during ribbon growth. As
part of this study, preliminary mechanical properties of
silicon, including FZ, Cz, and EFG silicon, were
measured to temperatures of about 10 °C below the
melting point of silicon. Supporting studies also were
conducted at Harvard University by J. Hutchinson and by
R, Brown at MIT. These studies partly were supported by
MSEC and partly by the FSA Project.

Table 5. Performance Data for Solar Cells Made From EFG Ribbon (100 mW/cm2;
ELH Lamp, 28°C • AR Coated; 14 cm2)

Ambients Jsc, Voc, Fill r/,
Process Condition mA/cm V Factor %

PH3

900°C

CO2 off

CO2 on

22.2 0.523 0.738 8.7
18.7 0.499 0.723 6.8
22.7 0.530 0.732 8.9
18.9 0.501 0.731 7.0
23.1 0.534 0.760 9.4

28.0 0.570 0.721 11.6
28.8 0.580 0.698 11.8
28.1 0.574 0.71 7 11.7
26.4 0.562 0.695 10.4
26.9 0.565 0.730 11.2
27.5 0.573 0.727 11.6
26.3 0.560 0.730 10.4
27.3 0.573 0.714 11.3
26.1 0.562 0.739 11.0
26.1 0.560 0.741 10.9
25.2 0.555 0.738 10.4
26.2 0.563 0.765 11.4
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Key Accomplishments. The key accom-
plishments of the MSEC R&D are:

(1) The EFG process for the preparation of low-
cost silicon sheet was demonstrated to be

practical. Although the technology had not
demonstrated all the requirements for the
achievement of DOE goals, it showed suffi-
cient performance to receive major industrial
support, and has been industrialized and
commercialized by MSEC in a somewhat
modified form.

(2) The importance of control of stress during
ribbon growth was clearly identified, and many
contributions to its control were developed.

(3) An optical control system was developed to
automate the process for the industrial produc-
tion of silicon material.

(4) The importance of carbon and oxygen in the
growth and performance of silicon ribbons
was identified.

b. International Business Machines Corp.."
Capillary Action Shaping Technique. A study of ribbon

growth by means of a capillary action shaping technique
(CAST) was conducted at IBM (Reference 48). The basic
mechanism of CAST growth is identical to that of the
EFG process. In addition to the crystal growth and
related characterization and performance evaluation
studies, analyses were made of the economics of the
process and related means of producing sheet.

This CAST program was a continuation of efforts
initially supported by NASA to evaluate the potential
for shaped crystal growth as a means of shaping sili-

con for PV applications. The continuation program
placed greater emphasis on the understanding and the
potential for the control of the growth process rather
than on the empirical development of the growth
process. In spite of this emphasis on understanding,
demonstration results were very good.

The scale-up of growth width from about 1 to 10 cm
by the time the program ended involved many technical
developments. These included early awareness of the
importance of stress and strain in the stability of ribbon
growth, and the development of thermal modifiers above
the crystallization point to contour properly the tempera-
ture gradient. Analysis of the growth rate provided one of
the early definitions of the limits to growth rate as controlled
by the rejection of the heat-of-fusion (Reference 49).
Also, the use of controlled gas flows was found to be an
important factor in modifying the behavior of the
crystallization front.

The use of alternative die materials also was

investigated (Table 6). In general, it was concluded
that these alternative die materials offered little

potential for improvement of the ribbon purity and
structure. Other die materials exhibited gross reactions
with the silicon and could be totally rejected.

Other studies involved control of the fluid behavior

in the capillary die to distribute impurities (intentional
and unintentional) within the growing ribbon. It was
found that the use of a higher-than-ordinary meniscus
was capable of reducing the silicon carbide particle
density on the surface of the ribbon from 5/cm2 to less
than 4 x 10-3/crn2 These silicon carbide particles

interbred wilh orocessing and often resulted in short
circuits in the junction of a fabricated solar cell. It was
further determined that ribbon resistivity could be
tailored by means of fluid flows across the width of the
capillary die By controlling the transverse fluid flow,
ribbons could be produced with controlled variations in
resistivity across their width.

An effective technique was developed for quickly
determining the generation lifetime in a piece of ribbon
over a large area. A series of metal-oxide-semiconductor
(MOS) capac:tors (0.5 or 0.1 5 mm in diameter) were
produced Io_ generation lifetime measurements. They
then were evaluated by a computerized system. Results
were compared with detailed structure within the ribbons
and on a coarser scale with solar cell performance. An
outgrowth oi: these studies was the correlation of ribbon
structure With defects. A summary of this ribbon quality
evaluation is shown in Table 7.

In addit',on to these general conclusions, many
detailed structural evaluations yielded an improved
understanding of the source and role of defects in
silicon. One sludy, using transmission electron
microscopy cTEM), defined the epitaxial growth of
silicon carbide films on silicon surfaces. Numerous

other studies of similar detail are presented in the Final
Report (see Reference 48).

Solar cells routinely were produced in this program
primarily as analytical tools in the understanding of defect
generation and its control. Baseline cell processing was
used on 1 to 2 _bcm material, and efficiencies of nearly
12% were produced.

The second major element of this program at IBM
involved ar_ economic analysis of the ribbon growth
process as a source of sheet for low-cost terrestrial
photovolta_cs The study used a decision analysis
approach called Photovoltaic Energy Conversion Analy-
sis (PECAN). The technique employed an economic
evaluation of the cost of the various direct and indirect

elements _rwoived in the production of ribbon and

included labor, capital recovery of equipment, mate-.
rials, services, and supplies. Scenarios were devel-
oped based on reasonableness of technical accom*
plishment, and final sheet costs were developed.

The results provided support for the selection of
this and similar ribbon technology as a means of satis-
fying grid-connected power applications. At the time of
analysis. _.h _t.... e_ costs of $25 to $50/m2 (1975 dollars)
were projected for 1986 with the upper limit based on

existing technology at the time of analysis. Ultimately,
target prices of about $20/m2 were developed for the
Project I hese early results emphasized the need for
technical cie_eiopments to achieve the required Project
goals
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Table 6. Die Material Evaluation

Capillary Durable In Ribbon
Material Rise Molten Silicon Growth

Aluminum boridea ......

Titanium boride Yes No (dissolves) Short ribbons

Zirconium boride Yes No (dissolves) Short ribbons

Aluminum carbideb ......

Boron carbide Yes Yes Long ribbons

Silicon carbide Yes Yes Long ribbons

SiN bonded SiC NoC Somewhat None

Vitreous carbon Yes Yes Long ribbons

Graphite (dense) Yes Yes Long ribbons

Boron nitride No Yes None

Silicon nitride NoC Yes None

aVapor pressure too high at 1412 °C.

bDecomposed and crumbled during storage.

CEvidence of surface wetting, but no rise in capillary slot.

Table 7. Evaluation of Quality of Ribbons Grown by the Capillary Action-Shaping Technique

Class

Lifetime Solar
Range, Cell Efficiency,*

/_s % Dominant Defects

I 1 to 10 5 to 8

II 0.01 to 1 3 to 5

III < 0.01 1 to 3

IV Not measurable --

Standard Cz 1 0 to 500 8 to 12

Coherent twins, stacking faults,
dislocations below 104/cm 2

Non-coherent twins, multiple stacking
faults, low-angle grain boundaries,
dislocations above 104/cm2

Grain boundaries, dislocations above
106/cm2

Silicon carbide, dendrites on surface

None

Measured at AM1, no AR coating.

2. Dendritic-Web Ribbon

The dendritic-web process, originally developed at
Westinghouse before the FSA Project and then dropped,
produces long, thin, single-crystal ribbon directly from
liquid silicon. The ribbon forms by solidification of a liquid
film that forms between two silicon filaments, called
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dendrites, that grow downward into the silicon meniscus
and form the borders of the ribbon (Figure 32). The sili-
con surfaces produced are of a high quality that permits
solar cell fabrication without any lapping or polishing, and
there is no kerf loss because of slicing. Ribbon thickness
is nominally 150 #m, although thinner material suitable
for making solar cells can be produced.
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Figure 32. Silicon Dendritic-Web Ribbon (top) and
Solar Cell (bottom) (Westinghouse Electric
Corp.)

a. University of South Carolina: Process
DevelopmenL The primary objectives of this program
(Reference 50), were to:

(1) Activate, operate, and modify an existing silicon
dendritic web growth machine as necessary to
investigate the role of the various machine
design parameters on the growth of ribbon, to
support thermal modeling studies, and to obtain
a better understanding of the growth process
and its limitations.

(2) Characterize the grown ribbon.

(3) Investigate mechanical stability of the silicon
ribbon.

(4) Investigate and define thermal stability, and
conduct thermal modeling studies.

Parts of a prototype dendritic web growth
machine, on hand at the start of the contract, were
assembled and put into operation. A program to
investigate the role of the various machine design
parameters on the growth of ribbon was carried out
during the duration of the contract. Development of the
machine proceeded to the point where ribbons could
be grown reproducibly up to lengths of 1 m, with
widths increasing linearly from the width of the seed
button initially, up to 1 cm at termination of growth.

Detailed comparisons of the analytical results of
ribbon growth wth experimental results were not per-
formed because the experimental data were of insuffi-
cient detail to make realistic comparisons. General
agreement was found, however, with respect to satis-

factory pull speeds for ribbon growth. Both theoreti-
cally and experimentally, they were determined to be
in the range of 3 to 5 cm/min.

To be cost competitive with the Cz process, it was
concluded that a ribbon process must have the
following capabilities:

(1) Pult speed in excess of 5 cm/min.

(2) A ribbon width at least 5 cm.

(3) Continuous growth (i.e., incorporation of melt
repienisrlment).

It was shown that the 5-cm/min pull speed is
attainable, although no value could be set as to the
maximum speed. From information obtained on ther-

mal gradients and the length of the opening in the top
thermal shield through which the ribbon is drawn, it
seemed that 5 cm width would be possible. There was
concern, however, about the feasibility of simultane-
ously attaining the goals of both width and pull speed.

In the thermal modeling studies, mathematical
models of dendritic-web ribbon growth were devel-
oped to predict both furnace-design parameters that
affect this growth, and the temperature distributions in
the melt, crucible, susceptor, and thermal shield. It was
found that the ribbon pull speed was strongly dependent
on the temperature of the top thermal shield, the spacing
between this shield and the melt, and the thickness of

the growing ribbon.

Key Accomplishments. The key accom-
plishments of the University of South Carolina's
dendritic-web R&D are:

(1) Developed a ribbon-growth machine process
to the point where ribbons could be grown
reproducibly up to lengths of 1 m with widths
up to 1 cm at the point of growth termination.

(2) Determined that to achieve suitable growth,
the mechanical system must be very rigid and
stable.

(3) Determined that certain twin spacing in the
seed favors high ribbon-pull speeds whereas
other spacings are unfavorable.

(4) Determined that the ribbon pull speed strongly
is dependent on the temperature of the lop
thermat shield, the spacing between this shield
and the melt, and the ribbon thickness.

b. Westinghouse Electric Corp.. Process
Development. Since April 1977, the FSA Project has
continuously supported development of the silicon
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dendritic-webribbongrowthprocessat Westinghouse
(References51to54).Theobjectiveoftheefforthas
beentodemonstratethefeasibilityoftheprocessand
advanceitstechnologyto thepointofreadinessfor
commercialapplication.A sectionofdendritic-web
ribbonandasolarcellmadefromthismaterialis
showninFigure33.

.... .... ,......!.......!........ :..... _. ,_v,

Figure 33. Schematic Diagram of Silicon Dendritic-
Web Ribbon Growth Process

A larger program directed by DOE, initiated early
in 1984, involved development by Westinghouse of
dendritic-web ribbon and high-efficiency solar cells
made from this material. It is a 3-year effort jointly
funded by the DOE (through both JPL's FSA Project and
SERI), Westinghouse, the EPRI, the Southern California
Edison Company, and the Pacific Gas and Electric
Company. The program is aimed at developing the tech-
nology required for use by electrical utilities.

A cross-sectional view of the growth configura-
tion, including the shield/stack located above the

susceptor lids and used to determine the thermal pro-
file of the cooling ribbon, is shown in Figure 34.
Shield/stack configurations that lead to improved
growth are arrived at by an iterative process involving
modeling and computer simulation of the web growth
process, including the thermal environments produced
by web growth systems, and by testing (thermal
probing as well as ribbon growth). Two dendritic-web
ribbon growth systems are shown in Figure 35.

Experiments are conducted to verify the model
predictions and computer simulations and to provide
data by which the furnace configurations and process
parameters could be modified to achieve improved

ribbon growth. The lateral (horizontal) temperature pro-
files in the melt and ribbon, as well as the temperature
profile along the cooling ribbon, are important factors
affecting the stress and, therefore, the quality of the
ribbon. Westinghouse has determined that concave-

downward ("frowning") lateral thermal profiles along
the cooling ribbon are desirable for producing low-
stress ribbon. Figures 36 and 37 show the maximum
width of ribbon and the maximum length of ribbon,

Lids

Control

FeedCompartment

Figure 34. Sectional View of Dendritic-Web Ribbon

Growth Configuration (Westinghouse)

Figure 35. Two Westinghouse Dendritic-Web Ribbon
Growth Systems

respectively, as functions of time. Use of an improved
model was introduced in 1982, and (as can be seen
from Figures 36 and 37) progress toward increasing
ribbon width and length improved dramatically.

An important feature for reducing ribbon cost is
the use of automated (unattended) ribbon growth.
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Such operation provides closer (and more objective)
control of the process than can be provided by an

operator, and it allows more growth systems to be

supervised by each operator, reducing labor cost.

From 1984 to 1986, Westinghouse, with the encourage-

ment of both a Technical Advisory Committee and a

Management Committee, has been placing heavy

emphasis on developing and demonstrating automated

closed-loop control of ribbon growth. The control system
consists of two elements. One is a melt-level control sys-

tem in which a laser is employed to sense the level of
the silicon melt from which the ribbon is drawn. This

information is fed to a melt replenishment system that

adds silicon pellets to the melt at a controllable rate to
maintain the desired level. The other element of the

closed-loop control system employs a dendrite thickness

monitor (DTM) to measure the thickness of each of the

two dendrites by a non-contact method. This information

is used to provide side-to-side temperature control of the

melt in the growth region through control of the position
of the induction coil that surrounds and heats the suscep-

tor. The average thickness of the two dendrites is used
for fine control of the temperature level of the melt, while

coarse controt is provided by a light-pipe system.

Because growth configurations suitable for starting

ribbon growlh typically are different from those required

for rapid steady-state growth, Westinghouse has investi-

gated the use of dynamic control, wherein selected ele-

ments of a growth configuration move during ribbon

growth. In the approach employed by Westinghouse, the
vertical distance from the bottom of the furnace lid to the

ribbon growth interface (the boundary between the liquid
and solid portions of the ribbon) was selected to be con-

trolled. Large increases in pull speed, up to 58 %, were

attained compared to those achieved with corresponding

static configurations, but the quality of the ribbon pro-
duced at these high speeds was degraded. Investigations

of dynamic control were incomplete at the conclusion of

the Project.

Although considerable progress has been made in

the advancement of the capabilities of the dendritic

web growth process, some formidable obstacles remain
that hinder the attainment of program goals. The major

problem to be overcome is the limitation on high rates

of area growth. Economic analyses (1981)indicate that
growth rates of the order of 18 cm2/min are required
on a continuous basis.

Westinghouse has achieved area growth rates as

high as 13 cm2/min for ribbon lengths of under 1 m, but
the maximum rate for long ribbons (ranging from 8 to 1 7 m)

of high-quality material was about 6 cm2/min. When

higher growth-speed is attempted, the ribbon often
deforms because of excessive stresses in the material.
These deformations take the form of buckling, rippling,

and twisting and can produce defects that adversely

affect solar cell processing yields and device perform-

ance. For example, when thermal stresses exceed the

material's yield point during growth, plastic deformation
occurs. This, in turn, causes a strained crystal lattice

when the ribbon is cooled to ambient temperature. These

dislocations can deteriorate cell performance. High-stress
material also can be unsuitable for cell fabrication

because of increased fragility (e.g., it can fracture during

cutting). Deformed material also can be unsuitable
because lack of flatness interferes with further process-

ing. Several studies related to these problems were
carried out at JPL and other laboratories with Project

support; these are reported in Section VII.

Other problems relate to premature termination of

ribbon growth or interference with proper growth.

These problems include the following:

(1) Particulate matter floating in the growth region of

the melt. These particles can either be silicon

oxide that drops into the melt, or silicon crystals
that form on cool regions in the crucible.

(2) Excessive silicon oxide deposits in the growth

slot (the slot in the lid through which the ribbon

is withdrawn from the melt) that interfere with

growth.
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(3) The ribbon pulling out from an excessively hot
melt.

(4) Formation of extra dendrites in the ribbon.

(5) Degeneration of the ribbon crystal structure
into polycrystalline material from high stress
or improper growth-interface temperatures.

This variety of problems related to growth speed
has caused Westinghouse to fail to meet a goal for
throughput, defined as the ribbon area produced in a
single furnace in a week's time. However, as shown in
Figure 38 and also as described below, Westinghouse
has achieved significant increases in this parameter
since March 1985.
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Figure 38. Maximum Throughput for Dendritic-Web
Ribbon Furnaces in 1985 and 1986

Key Accomplishments. The key accom-
plishments of the Westinghouse Electric Corp. R&D are:

(1) Throughput: In June 1986, a single furnace
grew 4.7 m2/week under conditions of nearly
constant melt level (melt replenished growth). In
February 1985, the record throughput was only
0.93 m2/furnace-week. Under other support,
throughput is expected to continue improving.

(2) Demonstrated closed-loop temperature control
of ribbon growth, wherein both the lateral
(across the growth region) temperature variation
as well as the temperature level were controlled
by remote (non-contact) monitoring of the den-
drite thicknesses.

(3) Development of melt replenishment process
and its use to grow a single ribbon to 17 m
length.

(4) Area growth rates of about 6 cm2/min were

achieved for long ribbons (8 to 17 m).

(5) Area growth rate of 13 cm2/min was achieved
for short ribbon lengths (a few tens of
centimeters).

(6) Long-term growth with melt replenishment (con-
stant melt level) demonstrated for up to 11-1/2 h,
and for no replenishment for up to 18 h.

(7) Maximum ribbon width of 6.9 cm was
demonstrated.

(8) Ribbon restart was demonstrated for maxi-
mum ribbon width of 6 cm.

(9) High-efficiency solar cells, in the range of
16.0 to 16.9% as measured by Westinghouse,
have been made from dendritic web ribbon.

Present Status. As described earlier, West-
inghouse is engaged in the third year of a 3-year
expanded effort. It started in early 1984 and is aimed
at achieving technology readiness of the dendritic web
ribbon and associated solar cell technologies. Support
from JPL ended in September 1986; however, the pro-
gram is continuing under support of the other sponsors.

The areas of work are as follows:

(1) Increasing ribbon area growth rate.

(2) Computer modeling to define the thermal con-
ditions required to produce high-quality ribbon
at high growth rates.

(3) Further development of the closed-loop
growth control system to improve the long-
term stability of growth under conditions of
high area-growth rates.

(4) Improvement of the melt replenishment process.

(5) Study of the growth interface region to define
conditions to increase heat loss (increasing
area growth rate) and to improve long-term
growth stability.

Technical Needs to Complete. Advance-
ments in two critical technical areas are needed to

move the technology of silicon dendritic web ribbon to
the point where the process is ready for commerciali-
zation:

(1)

(2)

The foremost requirement is to increase the
area growth rate to levels required to attain
JPL/DOE PV cost goals. Cost analyses (1981)
indicated that for a polysilicon cost of $14/kg,
for a cell efficiency of 15% AM1, a growth
cycle of 3 days, and semi-automated growth,
the ribbon growth plus silicon cost goal of

$22.4/Wp (1980 dollars) could be met with a
ribbon area growth rate of at least 18 cm2/min.
An updated economic analysis of the ribbon
growth process should be prepared.

The other key requirement is to improve (or at
least maintain) the ribbon quality so that solar
cells with higher efficiencies can be made
from ribbon. The cell efficiency goal currently
is 17.5% (AM1).
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c. JPL In-House: Web Team. An in-house

effort was established in 1984 to complement and
support the web-dendrite R&D program at Westing-
house. The JPL goal was to develop and transfer tech-
nology to Westinghouse that would enhance the prob-
ability to meet the program goals for web dendritic
growth.

The first effort was to obtain a Westinghouse
dendritic-web crystal grower. The ribbon grower was
received at JPL in February 1985 and, after training at
Westinghouse, and assembly, checkout, and initial
debugging of the equipment, the JPL team successfully
pulled dendritic-web ribbon in April 1985. The initial
operating experience indicated it would be highly
desirable to instrument the growth system more fully and
to monitor simultaneously and continuously more
process parameters than previously observed. Most of
the basic instrumentation was completed by July 1985.
Modifications to the chamber were made to reduce the

incidence of water and air leaks and to improve the
serviceability of the system.

In August 1985, several batch-replenished runs
were made from wide starts. Ribbons achieved greater
than 3 m length, and attained the maximum width pos-
sible for the growth slot design (4.2 cm). The growth
rate was about 5 cm2/min. The causes of termination

of growth were varied, including oxide falling into the
melt, extra dendrites, and excessive vibration.

A commercially available two-color pyrometer
revealed rapid temperature fluctuations on the surface
of the silicon melt, at times as much as +_2°C. The

pyrometer proved to be an excellent means of profiling
the temperature distribution of the melt surface along
the length of the growth slot prior to seeding for growth.
The previous method of mapping with a seed, which
could take hours and frequently provided unreliable data,
was replaced with a 1-min pyrometer scan.

The as-received spatial resolution of the commer-
cial pyrometer viewing the melt surface was 4 mm.
Better resolution was desired, but no commercial
pyrometers could be found that met the requirements.
JPL pyrometer design proved to be highly successful,
achieving temperature resolution equivalent to the
commercial unit (_+ 0.5°C) while improving the spatial
resolution to the desired 0.5 mm. This instrument was

sent to Westinghouse for their use.

A thermal analysis effort at JPL led to several
important insights and innovations. Thermal sub-
models were generated for critical parts of the ribbon
growth system. The susceptor, crucible, silicon melt
(with and without ribbon), and the ribbon itself were
modeled. An immediate result was the finding that
controlling the susceptor-crucible gap would eliminate
one source of variability in the heat transfer from the
susceptor to the melt. Another important finding was
that the growing ribbon itself acts as a heat shield that
results in a substantially different thermal distribution
than had been derived by previous analyses.

The thermal analytical effort was hampered by
imprecise or unknown values for properties of mate-
rials at high temperatures. The spectral transmissivity
o1 silicon was determined to assess the feasibility of
an in-situ web thickness monitor. A secondary result of
the transmissivity measurement virtually was to elimi-
nate light-piping as a mechanism for carrying heat
away from the growth interface.

Conclusions of the JPL In-House R&D are:

(1) The dendritic-web, crystal-growth process has
a wider operating window than previously
thought. Compensating trade-offs exist
between the critical growth parameters of tem-
perature, pull speed, and web thickness.

(2) T_ermat instabilities and imbalances that lead
to termination of growth result from unpredict-

ability of the RF coupling to the susceptor and
shields and the variability with time of radiat-
ing surfaces. Predictable resistance heating
should be considered, or another layer of con-
trol should be installed between the RF heat-

ing and the growth interface.

(3) Additional instrumentation development will
be recuired, both for exploratory purposes and
for operational control. This instrumentation

includes the JPL high-resolution, two-color
pyrometer and the Westinghouse dendrite
thickness monitoring system.

(4) Pure heat transfer analysis alone cannot
predict the conditions that will lead to suc-
cessful crystal growth. Experimental observa-
tions of such phenomena as button growth
lead to the conclusion that solidification along
the various crystallographic directions also

imposes restrictions. Reconciling the crystallo-
graDh,c and heat flow restrictions is not
obvious and requires further consideration.

(5) The control of ribbon buckling requires a
forced thermal environment above the melt;
these conditions are different from those

required for button growth and for the start-up
of nbbon growth. A dynamic configuration
with better control of the thermal environment
seem to be called for.

3. Inverted Stepanov: RCA Laboratories

From March 1976 to May 1977, RCA Laboratories
performed work (Reference 55) on inverted Stepanov
growth of silicon ribbon. This work was originally
begun to provide shaped crystal growth by use of
nonwetting dies, as an alternative method to conven-
tional Stepanov, EFG, or CAST processes. The use of
nonwetting dies was an attempt to avoid silicon con-

tamination from typical graphite dies used in EFG or
CAST processes. Growth in the downward direction

was needed to compensate for the lack of capillary
rise in the nonwetted dies.
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Fused silica and boron nitride were employed

initially as nonwetting dies. Boron nitride was used
initially, but because known doping occurred, fused
silica dies were designed in a V-shaped geometry for
subsequent use. Ribbon growth was not stable from
silica dies and these growth instabilities were associ-
ated with the formation and evolution of SiO gas. The
ribbon meniscus during growth was not "pinned" to
the die, but was in constant motion.

Because of ribbon growth problems associated
with the die material, alternative die materials were
considered. A program that RCA Laboratories con-
ducted on development and evaluation of other die
materials for use in the inverted Stepanov process is
described in Section VI.

Preliminary evaluation of reactivity of liquid silicon

with both CVD Si3N4 and Si3OxNy indicated a high
resistance to reaction. Eventually, silicon ribbon
growth was carried out using CVD Si3N4-coated
composite dies in the V-shaped crucible curved die
configuration. Short duration growth was achieved of a
2.-cm-wide, about 0.5-mm thick ribbon.

4. Ribbon-to-Ribbon Growth Process:
Motorola, Inc.

The RTR process, supported at Motorola, Inc.
(now Solavolt) from February 1976 to July 1979
(Reference 56), is a FZ crystal growth method. A
segment of polycrystalline silicon ribbon is fed into a
preheated region, heated additionally by a focused
laser beam, melted, and then crystallized, still in
ribbon form (Figure 39). The liquid silicon is held in
place by its surface tension. During this process, the
shape of the resulting single crystal is defined by the
shape of the feedstock and the influence of surface
tension. It was originally expected that the orientation
would be determined by that of a seed single-crystal
ribbon, brought into contact with the melted upper end

THIN, SINGLE-CRYSTAL

_ RIBBON

J ZONE OF MELTING AND
" RECRY STALLIZATION

_ EATING

AUXILIARY_ _-_

ROLLER /" NED LASER

TRANSPORT SYSTEM \HEAT SOURCE
>- \

SLOW \SPEED -x,

(_J POLYSILICON RIBBON
FEEDSTOCK

Figure 39. Schematic Diagram of Silicon Ribbon-to-
Ribbon Growth Process (Motorola)

t;,, _:_,,,L,,TY

of the polycrystalline substrate. In fact, the structure of
the product (Figure 40) was the "equilibrium defect
structure" described in Section IV.B1 .a. of this report.

Figure 40. Segment of Ribbon-to-Ribbon Showing
Defect Structure

The contract goals for the initial phase (feasibility
demonstration) of the RTR process were as follows:

(1) Ribbon width, 2.5 cm.

(2) Steady-state linear growth rate, 18 cm/min.

(3) Thickness, 0.1 mm _+0.05 mm.

(4) Dislocation density, < 104/cm2.

(5) Crystal structure, single-crystal.

(6) Length, 10 cm.

At the end of the first year's effort, 2.5-cm-wide
ribbons had been grown, but linear growth rates had
been limited to 0.25 cm/min. The ribbons grown at this
rate were shown to have low thermal stresses. Solar

cells made from the RTR material gave efficiencies 20 to
30% lower than coprocessed single-crystal cells. Various
material evaluations were made. Dislocation etch mea-
surements showed variations in defect structure across

the surface with some local high defect densities, but
also large areas of low defect densities. Spreading resis-

tance measurements showed good uniformity and evi-
dence that surface doping of undoped (high-resistivity)
precursor ribbons was sufficient to result in homoge-
neously doped ribbons after growth. Surface photovolt-
age measurements indicated relatively short diffusion
lengths.

A new RTR apparatus (RTR #2) was designed and
constructed with increased capabilities and improve-
ments over the first apparatus, and having the capability

to grow silicon ribbon continuously. Addition of a high-
temperature post-heater to the old RTR apparatus (RTR
#1) allowed a very linear temperature distribution from
1260 to 800 °C over a 3.6-cm length. Operation with the
post-heater allowed growth of ribbons at velocities of
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about7.5cm/min.Growthof0.1-mm4hick,1.25-cm-wide
polycrystallineribbonsat5cm/minwithnegligible
residualstressesbecameroutine.

ModificationstoRTR#1weremadetoincrease
laserpowerto 1.2kWfrom375W.Asaconsequence,
ribboncouldbegrownat10cm/minfor2-cm-wide
ribbonstock.Accompanyingthisincreaseingrowth
velocity,however,wasanewphenomenonofdendritic
growth.Non-dendriticgrowthwasachievedatvelocities
upto7.5cm/min.Thislimitsubsequentlywasraisedto
between8and9cm/minbyusinginertgasjetcoolingto
steepenthepost-heatertemperaturegradient.

RTRgrowthwasachievedfromadopedpolysilicon
ribbonfeedstockobtainedfromachemicalvapordeposi-
tion(CVD)process.Diffusionlengthmeasurementsofthe
resultingribbonindicatedequivalentperformanceto
materialregrownfromsingle-crystalfeedstock.

UsingRTR#1withthehigherlaserpower,consider-
ableincreasesweremadeinareagrowthrate.Anarea
growthof55cm2/minwasachievedforasingleribbon
bygrowinga7.3-cm-wideribbonat7.6cm/min.The
feedstockwas7.6-cm-widepolycrystallineribbonpro-
ducedbyCVDonamolybdenumsubstrate,and
removedbythermal-expansionshearseparation
duringcooling.VeryuniformCVDlayersofpolysilicon
couldbegrownonmolybdenumsubstratesthatwere
1mmthick,15cmwide,and60cmlong.Aseriesof
polycrystallineribbonsmeasuring5x 61cmwere
grownandsuccessfullyseparatedfrommolybdenum
substrates.

Ultimately,onerunattainedathroughputof
77cm2/minforsingle-ribbongrowth.A 90-cm2/min
throughputalsowasdemonstratedbysimultaneously
growingtwoRTRribbons,eachabout5cmwideata
pullspeedof8.9cm/min.

Multipleribbongrowthwasdemonstratedby
simultaneousgrowthoffourribbons.Inthisscheme,
areagrowthrateislimitedbyfurnacezone width. A
furnace was designed and fabricated that would allow
15-cm-wide growth (e.g., two 7.5-cm-wide or three
5-cm-wide ribbons) that would attain an area growth
rate of 100 cm2/min. The contract for this work ended,

however, before this furnace could be tested.

A technique was demonstrated that allows use of
short (60-cm4ong) substrates for material-efficient RTR

growth, thereby eliminating the need for near-continuous
sheets of polysilicon feedstock. The technique is based
on rigid-edge growth wherein a thin unmelted strip about
1 mm wide on each side of the ribbon provides support
to the ribbon, eliminating the need to hold the ribbon at
the ends and thereby allowing all of the ribbon (except
for the two narrow strips) to be recrystallized. In this
approach, CVD ribbons having a limited length (1 m)
would be grown, automatically loaded into a cassette,
recrystallized, and reloaded into a cassette.

Early in the program, RTR material yielded solar
cells of low performance (efficiencies averaged 7.7 %

against a goal of 12%). A degradation in open-circuit
voltage (Voc) of 50 mV was found to occur during the
metallization step. By using a low-temperature metalli-
zation step, this Voc degradation could be reduced to
10to 15inV.

Subsequently, some problems were encountered
with contamination of RTR materials during growth.

The presence of contaminants was indicated by a
sharp drop in diffusion length as measured by surface

photovoltage, and solar cell performances were in the
6% range. The elimination of several possible contam-
inating mechanisms resulted in increased diffusion
lengths for RTR ribbon grown from CVD feedstock. By
etching about 25 #m from the polyribbon surface that
had been in contact with the molybdenum substrate,
the molybdenum impurity level was reduced to below
the detection limit of neutron activation analysis. A

simple gettering sequence also was developed that
used PH 3 and increased the diffusion length. The first
solar cells made from gettered, pre-etched CVD feed-
stock were evaluated. The average efficiency for one
lot of these cells was 9.1% AM1. The best cell had an

efficiency of 11.3% AM1, with Voc = 0.533 V, Jsc =
29.4 mA/cm2, and a fill factor of 72%. A solar cell
fabricated later on RTR material grown from CVD
feedstock gave an efficiency of 1 t .8% AM1.

An initial economic analysis of the RTR process was
conducted, based on using a polycrystalline feedstock
produced either by a conventional CVD process or by a
plasma deposition process. That analysis indicated that
silicon ribbon produced by the RTR process in a

500-MW/year facility could be sold either at $025/Wp
using CVD polysilicon feedstock, or $0.18/Wp using sili-
con ribbon feedstock formed by plasma deposition from
silane.

Key Accomplishments. The key accom-
plishments of the RTR program are:

(1) Demonstrated feasibility of RTR process.

(2) Demonstrated throughput as high as
77 cm2/min for single ribbon, and as high as
90 cm2/min for multiple ribbon growth (two
ribbons).

(3) Demonstrated solar cell efficiencies as high as
11.8% AM1.

(4) Demonstrated multiple ribbon growth by
growth of four ribbons simultaneously.

(5) Economic analysis indicated that RTR silicon

ribbon could be sold at $0.25/Wp using CVD
polysilicon feedstock or at $0.18/Wp using sili-
con ribbon feedstock produced by plasma
deposition from silane.

Present Status. Support of RTR process
development by the FSA Project ended in July 1979,
but the effort has continued under private support.
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5. Low-AngleSiliconSheet:EnergyMaterials
Corp.

TheLASSgrowthprocessconsistsofcontrolled
freezingofathinlayeronthesurfaceofthemeltand
pullingofthesolidifiedmaterialmoreor lessparallelto
thesurfacetosomepointofdetachmentofthesolid
fromthemelt(Figure41).EarlyanalysesbyEnergy
MaterialsCorp.(EMC)hadindicatedthatveryhigh
arearatesofribbongrowthshouldbeattainableby
thisprocess.Thedevelopmenteffortsupportedbythe
FSAProjectverifiedthis.Keyfeaturesoftheprocess,
accountingforthehighpullspeedsthatcanbe
achieved,are:

(1)

(2)

Thedirectionofribbonpullisnearlyperpen-
dicularto thedirectionofcrystalgrowth.

Theheatoffusionis lostbyradiationfromthe
uppersurfaceofthesolidribbontoanenviron-
mentabovetheribbonthatcanbemadecold.

(3)

(4)

Thesolid-liquidinterfaceareafromwhichthis
heatis radiatedis large.

Thethicknessoftheribbonthroughwhichthe
heatof fusionmustbeconductedto beradi-
atedissmall(becauseofthewedge-shaped
crosssectionalongthegrowthfront).

PULL
DIRECTION

Figure 41. Schematic Diagram of Low-Angle Silicon
Sheet Growth Process (Energy Materials
Corp.)

Development of the LASS process at EMC for the
JPL/DOE program was carried out in two phases. The first
phase (Reference 57), from May 1979 to January 1981,
had the objective of demonstrating the feasibility of the
process. EMC's approach was to employ a shallow melt,
thereby inhibiting the formation of substantial convective
flows that would destabilize growth. Thermal gradients
controlling the growth rate were established in the melt
by thermal impedances within the growth region. The

meniscus was detached from the bottom surface of the

ribbon by a "scraper," that provided a lip that could be
maintained at a temperature above the silicon melting
point. After preliminary growth experiments were
conducted, a gas cooling block, or "cold shoe," was
designed and built to provide additional heat transfer
from the seed and ribbon interface. The cold shoe pro-
duced a stream of helium directed essentially perpendic-
ular onto the surface of the seed crystal. It was recog-
nized that maintenance of constant melt level was impor-
tant to the LASS process, but implementation of this fea-
ture was beyond the resources of the effort.

Experiments were conducted initially without the
cold shoe. Various difficulties were encountered,

including inability to control the direction of growth
from the seed. Incorporation of the cold shoe led to
successful ribbon growth. This demonstration of process
feasibility accomplished the objective of the effort.
Ribbon lengths up to 74 cm were grown with widths
varying from 5 to 25 mm. Pull speeds ranged from 5 to
68 cm/min, and thicknesses varied from 0.6 to 2.5 ram,
with typical values of about 1 mm. At the end of the
effort, the primary problems were stated to be melt-
level control and growth initiation. The top and bottom
surfaces of a LASS ribbon are shown in Figure 42.

A second phase of the LASS program was sup-
ported by DOE outside the FSA Project (1981 to
March 1984). FSA resumed participation in 1984 with
an objective to overcome the barriers to the low-angle
growth of high-quality material at high growth veloci-
ties. Parameters governing the growth of high-quality
material at high growth rates were to be identified and
optimized. The technical effort ended in June 1985.

During this last period of effort, a positive-
pressure, clean-room facility was constructed for the
growth experiments. A new furnace designed for high-
quality ribbon growth and provided with a heater at the
solid4iquid interface also was built. Although many prob-
lems were encountered in implementing the heater, a
successful configuration evolved. In a growth run that pro-
duced about 30 m of ribbon, EMC pulled more than 5 m
of material that had a full width of dendrites aligned with
the growth direction. X-ray analysis at JPL indicated
these dendrites are < 111 > single crystals. EMC
believes that the aligned dendrite material should pro-
duce better solar cells than polycrystalline LASS ribbon.
However, the use of any regular dendritic structure pre-
cludes very thin sheet and, thereby, limits silicon use
because the dendrites must be thick enough to inter-
connect side to side.

Minority carrier diffusion lengths (LD) were
measured on LASS material at different depths. The
results indicated that L D decreases in value from the
top surface to the bottom of the ribbon. The cause of
this undesirable gradient was investigated, but was not
determined. Diffusion length measurements on ribbon
grown from semiconductor-grade silicon gave values
as high as 40 #m.

Although solar cells were not made from LASS
material as part of this program, it has been demon-
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stratedinotherworkthatsolarcellshavingefficiencies
as high as about 13% AM1 can be made using LASS
ribbon with unaligned dendritic structure.

Redesign of the cold shoe allowed the use of a
video camera to observe the growth interface in real
time. This capability is considered by EMC to be
critical to understanding the solidification process and,
as noted under Key Accomplishments, was employed
to obtain information on the condition required for
growing the aligned dendrite structure.

Key Accomplishments. The key accom-
plishments of the EMC low-angle sheet program are:

(1) Achieved highest throughputs of any of the
FSA ribbon processes. Maximum throughput
of 450 cm2/min achieved. Demonstrated

maximum width of 15 cm and maximum pull
speed of 85 cm/min (but not simultaneously),
and significantly reduced ribbon thickness
from a range of 0.89 to 1.14 mm to a range of
0.64 to 0.76 ram.

(2) Developed the LASS process to the point
where significant length of material consisting
of aligned dendrites across the full width was
produced. Determined through use of real-time
video recordings that the aligned dendritic struc-
ture occurs when the shape of the solid/liquid
interface is linear.

(3) Economic analysis indicated sheet add-on
cost of $6.90/m2 (1980 dol)ars). For O.4-mm
sheet and silicon cost of $10/kg, total sheet
cost can be $18.70/m2.

(4) Solar cetl efficiencies as high as 12.9% AM1
were demonstrated by another program for
solar cells made of LASS material.

Present Status. Development of the LASS
process under support of the FSA Project ended in
June 1985.

Technical Needs to Complete. Probably
the major technical need is to determine whether the
material produced by the LASS process can be used
to make high-performance solar cells. The material
needs to be better characterized and investigations
made of its solar cell performance. It should be
determined whether or not the aligned dendrite struc-
ture produces better solar cells than polycrystalline
LASS material. If the aligned dendrite structure is the
preferred configuration, the process has to be better
controlled so that this material can be produced

consistently.

C. SUMMARY

Five different ribbon technologies were investi-
gated as part of the FSA program. Two of these, the
EFG and dendritic web processes, received the most
support and were taken to mature levels of develop-
ment. The EFG process has been commercialized by

Figure 42. Low-Angle Silicon Sheet Ribbon Surfaces
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MSEC, and Westinghouse is in process of commercial-
izing the dendritic web process. Higher rates of area
growth are required of both processes to meet the
DOE cost goals, but the growth rates of both are
presently limited because of the development of stress
at high growth speed. In the case of the dendritic web

process, the quality of material produced is the highest
of the ribbon processes that were investigated.

Other ribbon process development efforts
supported by the FSA Project were taken to different

levels of maturity, but were ultimately dropped so that
the increasingly limited resources available to FSA

could be concentrated on the Westinghouse program.
In 1981, the FSA Project was redirected by DOE from
a path that demonstrated the technology to research
involving understanding of ribbon growth problems. At
that time, the original goals for the EFG process and
the dendritic web process had not been met. After the
redirection, the MSEC program on the EFG ribbon

process focused mainly on the generic problems of
understanding and controlling stress/strain and on

investigating the role of carbon and oxygen in the
growth environment as affecting the performance of all
ribbon materials.

The DOE redirection also resulted in a slowdown
in the Westinghouse program on dendritic-web ribbon.

In 1984, however, a 3-year program with multiple
sponsorship, including the FSA Project, was under-

taken with the goal to develop the technology for utility
applications. This program was scheduled to be com-

pleted at the end of calendar year 1986 (DOE funding
ended in September 1986). Although many accomplish-
ments have been made in the course of this program,
ribbon area growth rates have not been increased from
the levels achieved by the end of 1982.

Major accomplishments achieved by the ribbon
growth program include the following:

(1)

(2)

(3)

(4)

(5)

(6)

Two of the five ribbon technologies supported
by the FSA Project (MSEC EFG process and
Westinghouse dendritic-web process) were
selected as offering the most promise and

were carried to mature states of development.

MSEC demonstrated the practicality of the
EFG process, showing sufficient performance
to warrant major industrial support. The process
has been commercialized.

Westinghouse Electric Corp. demonstrated the
practicality of the dendritic web process. West-
inghouse is committing major funding and is
engaged in efforts to commercialize the process.
Dendritic-web ribbon has been shown to be of

high quality suitable for making high-efficiency
solar cells (as high as 16.9% AM1 efficiency
as measured by Westinghouse).

In conducting a research program on the den-
dritic web growth process, JPL found that
thermal instabilities and imbalances that lead

to termination of ribbon growth result from
both variability with time of radiating surfaces
and the susceptor and thermal shields.

Motorola/Solavolt demonstrated the feasibility
of the RTR process with its high throughput.
Efficiencies of solar cells made from the

material were as high as 118% AM1. R&D
has continued under Solavolt sponsorship.

In its development of the LASS process,
the EMC achieved the highest throughputs of
any of the ribbon processes, a maximum of
450 cm2/min. In another program, it was
demonstrated that solar cells made from

LASS material can give efficiencies as high as
about 13% AM1.
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_ !_ _ _ SECTIONV

Other Sheet Growth Processes

A. INTRODUCTION

At the inception of the Project, the Large-Area Sili-
con Sheet Task elected to support the technology
development of all existing or proposed sheet growth
processes that might have the potential to achieve the
cost and performance goals of the Task. In addition to
the ingot growth and continuous, direct sheet growth
methods, other sheet growth processes supported by
the Task included:

(I) A method to grow unsupported sheet segments
directly from the melt using vacuum casting
(ARCO Solar, Inc. and SRI International).

(2) The growth of supported sheet directly from
the melt on ceramic substrates (Honeywell).

(3) The growth of supported thin-film sheet on
non-silicon substrates from solution

(Astrosystems).

(4) The growth of sheet by chemical vapor
deposition (GE, Rockwell, and RCA).

(5) The fabrication of sheet by deformation
processing (University of Pennsylvania).

All were high-risk techniques with no prior demon-
stration of feasibility. The initial contract goals in each
case were to test feasibility with the promise of cont-
inued funding in the case of successful demonstra-
tions. The contracted efforts were supported at differ-
ent times during the 11 years of the program. The
efforts met with varied success.

formance goals. Initially, a velocity of 1 cm/s was pro-
posed for the withdrawal rate of the ceramic from the
molten silicon.

The specific technique chosen for initial develop-
ment consisted of immersing an approximately 5 x 7--cm
rectangular piece of ceramic into a crucible of molten
silicon, allowing achievement of thermal equilibrium,
and slowly withdrawing the ceramic piece (Figure 43).
This experimental scale system was used to:

(1) Establish basic operating conditions.

(2) Evaluate several alternative ceramic materials.

(3) Evaluate a variety of carbon-coating tech-
niques.

(4) Establish preliminary pull speed and film
thickness parameters.

B. IMPLEMENTATION

1. Silicon-on-Ceramic Process: Honeywell
Corporate Research Center

The silicon-on-ceramic (SOC) process was proposed
by the Honeywell Corporate Research Center as one of
the responses to the initial RFPs in 1975.

A program was carried out to assess the technical
feasibility of the process (Reference 58). Fundamen-
tally, the process consists of placing a piece of appro-
priate ceramic in contact with molten silicon and sub-
sequently withdrawing the ceramic at a controlled rate
to yield a coating of the desired thickness. An alumino-
silicate mullite (2 SIO2.3 AI203) was selected as the
ceramic, although other materials were evaluated.
Because of marginal wetting of this mullite by silicon
(contact angle 90 deg), a film of carbon on the ceramic
was required to enhance the wetting. Initial cost projec-
tions were developed based on proposed technical per-

Figure 43. Dip Coating of Silicon-on-Ceramic
Process (Honeywell)

Subsequently, using the same basic dipping
principle, a second system was developed in which
much greater attention was paid to the cleanliness of
the operating conditions to improve the purity of the
silicon coatings.

A variety of ceramics were evaluated to test
requirements. These included: mullite, silicon oxide,
aluminum oxide, zirconia, calcium aluminate, and cor-
dierite.

Primary considerations were: high-temperature
stability, thermal expansion match to silicon, and
wettability. In most cases, the wetting problem was
circumvented by means of carbon coatings.
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These investigations led to the conclusion that
only mullite held potential as a substrate material
because of reasonable match of its thermal expansion
to that of silicon. In later stages of the program,
however, it was found that, even with the minimal
difference in expansions between mullite and silicon,
spalling of the silicon coating occurred. For this
reason, a program was instituted with Coors Porcelain
to try to modify the thermal expansion of the mullite
substrate by means of compositional adjustments.
This program (described in Section VI.B.1 .c.) was
completely successful. A mullite composition was
developed that precisely matched the thermal
expansion of silicon and it was used extensively
throughout this program.

Using the early immersion process, various
processes of carbon coating the ceramic also were
evaluated. These included mechanical scrubbing of
the surface with carbon and the use of paints,
suspensions, and impervious vitreous carbon films.
The mechanically scrubbed surfaces and the vitreous
carbon films produced by Tylan Industries were the
most successful {see Section VI.B.1 d.). The vitreous
carbon films also offered an advantage in lowering the
sheet resistance of devices.

The initial studies of withdrawal of the ceramic

from immersion in a crucible indicated that the pro-
cess obeyed a functional relationship in which the sili-
con thickness varied inversely as the square of the
removal velocity. It also was determined that to obtain
reasonable film thicknesses (50 to 1 50 #m), pull
speeds of less than 0.1 cm/s were required. Because

this speed was too low to amortize equipment and
labor, consideration was given to more rapid heat
removal. Extensive thermal analyses were conducted
based on accelerated heat removal by means of cold
shoes and gas flows, as well as the potential for
asymmetric growth. These analyses led to improved
thicknesses, and useful layers ultimately could be
obtained at velocities of the order of 0.25 cm/s. This

level was adopted as an intermediate goal based on
other revisions of the operating conditions.

Electrical and structural evaluation of the material

produced led to several other important findings. The
structure of the silicon films was the equilibrium defect
structure identical to that described in Section IV.B.1 .a.

Regions in which the twin density was high and well
ordered generally showed better diffusion lengths. It
also was determined that the silicon in the crucible,
when in contact with mullite, showed a reduction in

bulk resistivity from about 50 fbcm to less than 1 _-cm
in an hour, This was traced to the small but finite

solubility of the mullite in the silicon, resulting in
contamination of the melt by aluminum.

Early solar cell performance for photodiodes
fabricated from this material was less than 5 % for

small photodiodes without antireflective (AR) coating.
Because of the insulating nature of the ceramic
substrate, however, larger area cells could not be
produced initially because of the high sheet resistance
of the base.

As a result of the problems stated here with the
use of immersion coating, an alternative technique
called Silicon Coating by Inverted Meniscus (SCIM)
was proposed and developed in 1978. In this process,
a long (1 m) sheet of mullite was passed above, but in
contact with, a trough of molten silicon. Surface tension
caused the silicon to be pulled along the substrate,
depositing a fiqm of silicon as the ceramic passed by.
The SCIM approach is shown in Figure 44. Two oper-
ating systems were developed. In the first, the path of
the mullite substrate was horizontal. In the second sys-
tem, the mullite substrate could be tilted at some angle to
obtain better control of the behavior of the meniscus.

This offered the technical advantages of:

(1) Reduced time of contact of the melt with the
substrate.

(2) Elimination of the need for thermal equilibrium.

(3) Greater control of the velocity-thickness
relationship.

(4) Closer approximation to a continuous produc-
tion process.

MOVABLE DfSPLACER

r _ SILICON LAYER, ::co..
LIQUID SOLID INTERI;AC[

" GRAPHITE ROLLERS

Figure 44. Schematic Diagram of Sihcon Coating by
Inverted Meniscus Process (Honeywell)

These two techniques were developed extensively,
and the final system (Figure 45) was operated using two
substrates, each 12.5 x 100 cm, moving through the
coater at speeds ranging up to 0.1 cm/min. Again, it
was found that the films produced obeyed a velocity
squared-versus-thickness relationship and that applica-
tion of only radiative cooling for the crystallization of
silicon limits the growth velocities for practical thick-
nesses to <0.2 cm/min.

As the coating process began to show technical
feasibility, a means was required to achieve contact to
the back of the base material in the devices produced
by this process. This was to reduce base series resis-
tance. The approach ultimately selected used perfor-
ated ceramic having slots or holes to allow contact to
the back of the base material. This approach was suc-
cessful, and series resistance within the cells was
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Figure 45. Honeywell Sihcon Coating by Inverted
Meniscus Coater for Silicon-on-Ceramic
Process

reduced to acceptable limits. Solar cell efficiencies
greater than 10% ultimately were achieved using this
approach. The perforations within the ceramic sub-
strate reduced its strength somewhat, but appropriate
thermal gradients in the SCIM coaters, using entrance
and exit furnaces, were able to control this problem.

An alternative scheme, considered for the base
contact, used a striped configuration in which
alternative base and emitter contacts were made.

Molded, striped concentrators were to be used to
eliminate the front surface area not irradiated. Analysis
of this approach and limited experimentation indicated
that stripe widths of the order of <2 mm would be
required to reduce base series resistance, and that
these widths would likely be impractical for the
process envisioned.

Because of budgetary constraints, the SCIM
process development was discontinued by the FSA
Project in late 1980. Several process problems
remained, all of which needed successful development
to achieve a cost-effective process. The technical
limitations that seemed most critical were:

(1) Appropriately high crystallization velocities
(>0.5 cm/s) did not seem achievable.

(2) Solar-cell efficiencies continued to remain

below that of competing technologies, and fur-
ther improvements in efficiencies were
needed.
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(3) Production cost of the mullite substrates in

large-scale operations remained in question.

2. Chemical Vapor Deposition

a. General Electric Company. Floating Sub-
strate Process. The objective of this effort, which
began in January 1976 and was supported by FSA
(Reference 59), was to demonstrate the feasibility of
the floating-substrate sheet-growth process for silicon.
In this process, a thin, single-crystal sheet of silicon is
to be grown by CVD on a pool of molten tin saturated
with silicon. Most of the growth was to take place near
the hot end of the tin pool. The silicon, arriving at the
surface of the molten tin, was to dissolve in the liquid
metal until the latter became saturated and then was to

crystallize on the surface. Under steady-state conditions,
the silicon sheet was to be drawn toward the cooler end

of the furnace and then lifted off the supporting liquid
after the silicon temperature had dropped below the
range of plastic deformation. A schematic diagram of the
process is shown in Figure 46.

DIRECTION OF SHEET TRAVEL

1 .......

TEMPERATURE PROFI E

SILICON

DEPOS,_,o_

Figure 46. Floating Silicon Substrate Sheet Growth
Process (General Electric Co.)

The following investigations were carried out to
study the following processes involved in growing sili-
con sheet by this method: supercooling, crystal growth
from supercooled tin-silicon alloy, silicon uptake into
tin from silanes, and surface growth.

Results of the supercooling experiments were
quite encouraging, indicating that reasonable sheet
growth rates could be achieved in the temperature
range from about 1t 00 °C, even with melts whose
surfaces were not completely clean (scums tended to
form). Clean melt surfaces were expected to give
increased growth rates through greater supercooling.

It was determined that silicon can be incorporated
into a tin melt by direct interaction of the melt with a
flowing silane gas stream. More than 30% of the silane
was converted to silicon in a single pass. It was found
that silicon is incorporated into liquid tin at the same
rate that it is deposited upon silicon substrates and
that this rate of incorporation was independent of the
degree of melt saturation.
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The growth of crystals nucleated spontaneously at
the tin-silicon alloy melt surface was characterized.
The crystal growth was consistent with dendritic and
web ribbon growth from (11 1) singly twinned, triangu-
lar nuclei. Examples of planar surface growth of small
(<0.1 mm), thin crystals from these twinned surface
seeds were observed, demonstrating, in principle, the

feasibility of the process. Surface growth at velocities
as high as 5 mm/min was obtained. This growth
generally took the form of interlocking crystals and
was thin enough to follow the liquid surface.

Small, single-crystal regions often appeared along
the surface of the tin-silicon melt, but did not propa-
gate. They persisted for only a few millimeters and
then reverted to branched dendritic growth. The
reasons for the polycrystalline growth are not clear.
The contractor suggested that the most probable

cause was poisoning of the growth interface by impuri-
ties, either in solution or at the melt surface.

b. Rockwell International. This program
was instituted in response to the initial sheet growth
RFP. The study (Reference 60), was directed at the
evaluation of the CVD of silane (Sill4) on low-cost sub-
strates as a potential means of producing low-cost sili-
con sheet. Silane was chosen because of its relatively
low decomposition temperature and availability in pure

form. The program included selection and develop-
ment of suitable substrates, preparation and evaluation
of silicon films, and preparation and evaluation of solar
cell structures. Although deposition was conducted in
research-scale reactors, deposition rates and condi-
tions were maintained to be consistent generally with
cost-effective sheet production.

An extensive portion of the evaluation involved
selection and development of low-cost substrates for
the process. A wide variety of glasses were evaluated,
including special and proprietary compositions as well
as polycrystalline ceramics, such as AI203 and mullites.
Emphasis was placed on a reasonable thermal expan-
sion match between the substrate and silicon as well as

careful evaluation of the details of the substrates. Specifi-
cally, ceramics of the same nominal composition were
evaluated relative to their grain size, surface preparation,
and other physical characteristics. Substrates of single-
crystal sapphire and single-crystal silicon were used as
controls in evaluation of deposition conditions. Extensive
studies were conducted of the effect of diluent gases
(hydrogen and helium), flow rates, temperatures, and
pre-deposition thermal treatments.

Substrate surfaces and deposited layers were
evaluated by a variety of techniques including SEM,
x-ray diffraction, and conventional metallography.
Electrical characteristics, including resistivity and
diffusion length, were measured on the deposited films.

In selected cases, small photodiodes and solar cells
were produced by Qpticat Coating Laboratories, Inc.
(now ASEC).

After consideration and evaluation of hundreds of

substrates under a variety of deposition conditions,
several meaningful conclusions were derived. Deposi-
tion compatibil ty for several special glasses was
obtained, but the grain size of film so deposited was
too small for adequate solar cell performance. High-

purity alumina ceramics, especially those with large
grains and carefully prepared surfaces, produced local
epitaxy of large-grain silicon (>300/_m). Device per-
formance was still unsatisfactory for PV power appli-
cations. Lower-purity alumina, because of multiphase
structure, resulted in non-homogeneous silicon film
growth.

c. RCA Laboratories: Epitaxiaf Silicon

Growth for Solar Cells. The purpose of this program
with RCA Laboratories was to evaluate the potential
for the use of epitaxial silicon growth on low-cost sili-

con substrates to achieve higher conversion efficiency
devices (Reference 61 ). A high-capacity rotary-disk
reactor, developed by RCA for a separate program,
was used as the basis for scaled-up cost projections.
Most of the research was conducted in conventional

epi-deposition reactors.

Several specific low-cost substrate products used

in this program are described in Table 8. Cells were
produced by epitaxial deposition or diffusion into these
substrates, and results were compared to single-
crystal conlrol cells produced by either diffusion or epi-
deposition Selected results are shown in Table 9. In all
cases, cells produced by epi-deposition of the emitter
layer were interior to those with a diffused junction. The
n-type epi junction layers, however, were about 1 /_m
thick and c_rtainly not optimum. No effort was made to
optimize this aspect of the study.

Although variations from sample to sample among
the low-cost substrates were significant, general trends
were apparent. Multigrained substrates performed the
poorest when epi-based layers were used. Conversely,
the low--cost single-crystal substrates (titanium-doped Cz
and upgraded metallurgical-grade silicons) came closest
to reproducing the performance of the controls. Thus, the

epitaxial growth process demonstrated the ability to
enhance the performance of chemically contaminated
material more readily than structurally defective material.

Cost analyses of the epi process were conducted to
evaluate the potential value of the process. Analyses
were conducted using the advanced rotary design
reactor that had been demonstrated to perform well. An

added value was obtained of $0.46/Wp at a projected
12.5% cell performance level. Although such costs .,
might find a role in intermediate module prices of several
dollars per watt, they are inconsistent with ultimate

module cost goals of $0.50/Wp (1975 dollars). A
conceptual design for an advanced reactor was devel-
oped and add-on costs for the process in this reactor

were projected to be less than $0.10/Wp (1975 dollars).
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Table 8. Characteristics of Low-Cost Silicon Substrates

Resistivity, Level,
Substrate/Vendor Type fbcm ppm Impurity Crystallinity

Grain

Size,
am

SILSO/Wackera p 4-8 1-5 C

RMS/Union Carbideb p - 0.06 100-200 C,B,P,Fe

UMG/Dow CorningC p -0.02 10-100 AI,B,P

Cz-Ti/Dow Coming p 0.3 2 x 1014 Ti

Cast Silicon/Crystal Systemsd p -1

Polycrystalline

Polycrystalline

Single crystal

Single crystal

Polycrystalline

1-10

3-10

NO grains

No grains

aWacker Chemical Corp., Richardson, Texas; SILSO is a brand name.

bUnion Carbide Research Laboratory, Tarrytown, New York; RMS is "refined metallurgical grade."

CDow Corning Corp., Hemlock, Michigan; UMG is "upgraded metallurgical grade."

dCrystal Systems, Inc., Salem, Massachusetts.

Table 9. AM1 Characteristics of Solar Cells with Epitaxial Base Layer

Base Thickness Jct, Js, Voc , Fill _/,
Substrate #m Formation mA/cm2 V Factor %

Control 10 Diff 27.0 572 0.782 123.0

Control 10 EPI 23.5 573 0.723 10.0

Wacker 10 Diff 26.9 450 0.531 6.6

Wacker 10 EPI 22.8 540 0.570 7.3

RMS 14 Diff 25.4 535 0.66 9.3

RMS 10 EPI 20.4 526 0.60 7.3

UMG 15 Diff 25.3 602 0.80 12.4

UMG 10 EPI 22.2 577 0.74 9.5

CAST 10 Diff 26.2 571 0.75 11.1

CAST 10 EPI 22.9 535 0.66 8.1

Cz/Ti 10 Diff 24.9 576 0.78 11.5

Cz/Ti 10 EPI 20.2 548 0.70 7.9

Cz/Ti None Diff 18.0 545 0.77 7.8

3. Vacuum Die Casting: ARCO Solar, Inc. and
SRI International.

This short-term, high-risk effort was started in 1979
to investigate the possibility of die-casting silicon ribbon
and fabricating low-cost solar cells from the resulting
sheet material. It was one of the "Tsongas" contracts
similar to that awarded to Kayex ('see Section ll.B.1 .a.).
The goals of this program were twofold:

(1) To develop a low-cost, polycrystalline sheet
production technology through scale-up to a
commercial level.

(2) To develop processing technology to produce
polycrystalline solar cells with high energy-
conversion efficiency.

The program was structured in three phases.

Phase 1, involving development of a silicon ribbon

vacuum casting process, was to be performed by SRI
International. The concept was to lower several ribbon
molds simultaneously into molten silicon in a vacuum

system and then to fill the molds by applying an over-
pressure to the melt. No final report was issued on this
effort.
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Phase2dependedonthesuccessof Phase1.In
Phase2,SRIwastoscaleupthevacuumcastingtech-
niquetoa low-costcommercialprocess.Phase3,to
beconductedentirelybyARCOSolar,woulddevelop
deviceprocessingmethodsanddevicedesignsthat
wouldallowthelow-costfabricationof12% efficient

cells on polycrystalline wafers. Phase 3 work was to
begin using procured polycrystalline sheet, Wacker
Silso for example, and the work then would be applied
to the vacuum cast product as it became available.

The vacuum casting experiments of Phase 1 were
unsuccessful. One data point, however, was obtained:
molten NaF..NaSiOx successfully encapsulated silicon
and acted as a mold release in carbon molds. Thus,

SRI began a program to pressure-cast silicon discs in
sodium fluosilicate-coated molds, and this effort

yielded several polycrystalline discs. Because analysis
indicated that the economic goals of the FSA Project
would not be met using the pressure-casting process,
the entire program was terminated when the initial
funds for Phase 1 were exhausted.

4. Deformation Processing: University of
Pennsylvania

This program was instituted to assess the potential
of using a metal deformation process such as hot rolling
as a means of forming sheet silicon (Reference 62). The

program used a forging technique employing right
circular cylinders of silicon as a means of assessing
feasibility. This forging process is far simpler than hot
rolling to implement, and was judged to be suitable for
feasibility evaluation.

The experimental program included the construc-
tion of a modified hot forging system using a tungsten-
rhenium platen to apply pressure both to right circular
cylinders of single-crystal silicon of various orienta-
tions and also to polycrystalline silicon. Samples were

deformed by 5 to 40% at temperatures ranging from
1000 to 1370 °C, and then were analyzed by optical
and x-ray diffraction techniques for structure and by
diffusion length measurements for electrical character.

The feasibility study was successful in that the
basic mechanical properties of silicon were deter-
mined, and were found to be incompatible with defor-
mation processing as a method of producing useful
sheet. The primary limitation derived from the large
amount of energy required to allow the deformed sili-
con grains to recrystallize into a coarse-grained
structure-free product. This limitation was restrictive in
two ways: it precluded continuous or repetitive defor-
mation in the silicon, and the deformed product con-
tained excessive internal structure to be useful for
electronic applications. It did, however, define prelim-

inary deformation processing conditions for applica-
tions in which limited deformation and internal

structure were acceptable.

5. Liquid-Phase Epitaxy: Astrosystems, Inc.

From February 6, 1984 through July 8, 1984,
Astrosystems, Inc. worked to develop and demon-
strate a process to deposit thin films of polycrystalline
silicon onto foreign substrates (Reference 63). These
silicon-substrate combinations were to be fabricated

into high-efficiency solar cells. A secondary effort was
aimed at development of a solar cell fabrication
process for this material. This effort and subsequent
work are described in Reference 64.

Specifically, the goal of this work was to grow
polycrystalline films of silicon by liquid-phase epitaxy
(LPE) from tin solution onto 0.1 3- and 0.25-mm-thick
steel (coated with a proprietary metallurgical barrier)
and onto 1-mm-thick quartz glass. The process was
intended to produce 20-/_m-thick p-type absorber layers
with 120-#m diffusion lengths and epitaxial n-type
regions. The growth process employed a "slider" boat
and operated in the temperature range from 800 to
1000°C at cooling rates of 0.1 to 3.0°C/min. Growth
rates of 0.4 to 4.0 #m/min were obtained.

During the course of this work, 32 separate layers
were grown on quartz substrates. Of these, about one-
third achieved 100% coverage. Initial silicon films on
coated steel and molybdenum also were grown. The sili-
con grains grown on quartz ranged from 15 to 50 #m
thick and 30 to 240 #m wide. The aspect ratio ranged
between 1.71 and 8.00, and the measured film resistivity
(including noncontinuous films) ranged between 0.05 and
186 fbcm. The films grown on coated steel were charac-
terized using electron-dispersive analysis of x-rays and
revealed only a trace of tin.

R&D continues on the thin-film crystalline silicon

solar cell process at Astrosystems, Inc. Device effi-
ciency of 9.7% AM1 (corrected for AR coating) for a
0.1 mm2 solar cell, was reported by Astrosystems at
the 6th Eurooean Conference, London.

C. SUMMARY

None of the seven efforts reported here has
achieved commercial status. Only the work at Astro-
systems is still ongoing, and it continues with internal
funding. There were, however, many useful technical
observations and achievements that resulted from the
work of the various contracts.

A key conclusion common to all the contracts is
that silicon compatibility with foreign substrates or
container materials is a critical problem unlikely to

yield to an easy or inexpensive solution. This was as
true of the vacuum casting and supported-film work as
it was of the epitaxial growth work. Each of the

programs reported some highlights:
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(2)

(3)

(4)

Developmentofacustom-formulatedmullite
ceramicmaterialwithathermalexpansion
closelymatchedtothatofsilicon(Honeywell
andCoors).

A novelreleasematerialthatallowedcasting
of siliconsheetinmoldswithouttheusual
catastrophicfailureofthesheetor themoldas
a resultofwettingandsubsequentstressing
becauseofdifferentialthermalexpansion
(SRI).

TheSOCprocessdemonstratedthatacon-
trolledsiliconcoatingcanbeappliedtonon-
siliconsubstratesandcoatingsofrelatively
brittlematerials.

Lineargrowthratesof _>0.5cm/minofsilicon
sheetfromthesurfaceofasilicon-saturated
tinsolutionweredemonstratedbyGE.

(5) Demonstration of growth by CVD of large-
grain silicon films on non-silicon and low-

grade silicon substrates (Rockwell and RCA).

(6) Definition of conditions for hot-forming single
and polycrystalline silicon.

None of the high risk sheet growth processes
described in this section achieved the cost, through-
put, or performance requirements of the Project. The
increased performance requirement perceived in the

1980s (i.e., 15 to 17% module efficiency) was beyond
the perceived best potential performance for these
materials.

59





SECTIONVl

Supporting Research: Materials

A. INTRODUCTION

Many silicon sheet-growth problems associated
with the physical and chemical limitations of materials

were identifed early in the FSA Project. For example,
corrosion arising from the containment of molten sili-
con results both in limited life of the containers and
contamination of the silicon. Research also had to be
done to improve the compatibility of ceramic materials
with molten silicon to support the development of the
SOC sheet growth process.

This section of the report deals with those
research efforts that involved characterization of mate-

rials behavior as well as materials development. The
research was conducted by 10 different organizations.
For the purpose of this report, the various studies have
been divided into materials development programs and
materials evaluation studies, even though each contains
some component of the other.

B. IMPLEMENTATION

1. Refractory Materials Compatibility/Die and
Container Materials Studies

a. University of Missouri-Rolla. The University
of Missouri-Rolla (UMR), initially a subcontractor to
Eagle-Picher Industries (EPI), supported the EPI devel-
opment of refractory dies and containers to be used in
the handling of molten silicon. The UMR studies dealt
with the effects of a controlled atmosphere on the sili-
con product in those cases where molten silicon was
in contact with refractory materials. UMR, awarded a

follow-on study contract in May 1979 (Reference 65),
investigated the effects of partial pressures of reactant
gases near the equilibrium partial pressure. The study
was to look for the formation of reactant gaseous
compounds.

Under the EPI subcontract, UMR demonstrated the

importance of a partial pressure of very low amounts
of oxygen on the refractory/molten silicon interaction.
Using a thoria-yttria solid-solution electrolyte oxygen
cell, routine measurements were made of the oxygen
partial pressure well below the equilibrium partial pres-
sure for the formation of Si02 (about 2 x 10-19 atmo-
spheres at 1700 K).

A cell was constructed that could be used in the

UMR laboratory for measuring oxygen partial pres-
sures in sessile drop experiments. The cell also could
be transported to other contractor facilities, so that
oxygen concentrations could be measured in their
silicon sheet and ribbon furnaces. Such measurements
were carried out in the silicon ribbon furnace at Mobil-

Tyco and at the JPL silicon sessile drop furnace.
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The atmosphere in the MobiI-Tyco EFG ribbon-
pulling furnace consisted of argon gas that flowed into

the system at a rate varying from 2 to 10 liters/min. (Typi-
cally, commercially available argon contains about 1 to
100 parts per million of oxygen as an impurity. This
corresponds to a 10-6 to 10-4 atmosphere partial pres-

sure at 1 atmosphere total pressure.) The MobiI-Tyco fur-
nace contained large amounts of graphite as crucibles,
heaters, dies, and the like, all of which serve to reduce

the amount of free oxygen in the system. The oxygen
partial pressure of the purge gas after passing through
the furnace was 10-12.1 atmosphere, as measured at
1273 K by the oxygen cell.

The gas used in the JPL sessile drop furnace was
helium from standard cylinders. (Typically, cylinder
helium has oxygen impurity levels of about 10-5 atmo-
sphere at 1 atmosphere total pressure.) Graphite in the
furnace reduced the oxygen content of the atmosphere
through formation of CO and CO2. The oxygen partial
pressure of the purge gas exiting the furnace was
10 -13.4 atmospheres, as measured at 1273 K by the
oxygen cell.

Sessile drop experiments were carried out at UMR
on a variety of candidate die and container materials
including hot-pressed silicon nitride, CVD-coated silicon

nitride, sialon, and CVD-coated silicon carbide on graph-
ite. These experiments consisted of in-situ measurements
of the contact angle between the liquid silicon and the
substrate (Figures 47 and 48) and subsequent examina-
tion of the silicon/substrate interface to determine the

degree of interaction. All sessile drop experiments were
conducted at 1 atmosphere total pressure and oxygen
partial pressures less than 1 x 10-19 atmosphere.

The materials investigated fell into two categories:
those upon which silicon sessile drops did or did not
form an equilibrium contact angle.
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In the first category were two materials: (1) two
varieties of hot-pressed silicon nitride (from Kawecki-
Berylco and from AVCO), and (2) Controlled Nuclea-
tion Thermal Deposition (CNTD)4 silicon nitride coated
on hot-pressed silicon nitride. Because the silicon/
CNTD silicon nitride contact angle agreed very well

with previous measurements made on the same mate-
rial, it provided a control for reproducibility verification.
Although the final contact angle of molten silicon on
the AVCO Si3N4 (after 8 h) was greater than for the
Kawecki-Berytco Si3N4, the latter seemed to react
more strongly with molten silicon.

Ultracarbon silicon-carbide-coated graphite and
Battelle Sialons5 fell in the category of materials upon
which silicon did not form a true sessile drop. Subse-

quent examination proved that the SiC coating was not
a completely integral surface, so molten silicon could
seep through the coating to the underlying graphite.

A pseudo-sessile drop formed on the Battelle
Sialon because a semi-rigid, skin-like coating with a
high concentration of calcium that formed on the liquid
silicon drop prevented attainment of equilibrium. The
thickness of the coating, and thus its rigidity, depended
on the length of time the sample was held just below the
silicon melting temperature prior to melt, plus the time
the sample was held after melting.

The key accomplishments of the UMR R&D are:

(1) The partial pressure of oxygen in the Mobil-
Tyco ribbon furnace was measured, and the
results led to further refinement of the system
to control the furnace atmosphere.

(2) Atmosphere effects were established for can-
didate refractory die and container materials.

(3) Test sample/silicon interface areas were
characterized for composition, phases, micro-

structure, and changes therein.

b. Battelle Columbus Laboratories. A RFP for

investigations of "Die Materials for Silicon Ribbon
Growth" was initiated by the Task in November 1976.
Battelle Columbus Laboratories was awarded a contract

in July 1967 for the development and evaluation of
refractory die and container materials (Reference 66).

Considerable effort was expended in studies of
solution thermodynamics of the interactions of molten
silicon with selected refractory materials. The objec-
tive was to gain a more detailed understanding of the
reaction processes and to identify possible die and
container materials. The interaction of molten silicon

with SiC, Si3N 4, BeO, AI203, SiO2, and a mullite
composition was studied in a Knudsen cell, using a
mass spectron-leter to monitor the vapor species
(Table 10). Evaluations of impurity levels in silicon
after prolonged contact with these materials indicated
that SiO2 is the ceramic material most resistant to
molten silicon attack. Other than Si02, BeO is by far
the most stable metal oxide, and Si3N4 is more stable
to molten silicon attack than is SiC.

Silicon metal oxynitrides were investigated in an
effort to upgrade the mechanical properties of refrac-
tories while maintaining a low solubility to limit the
contamination of the silicon. Candidate materials
chosen for study were/3'Sialon, O'Sialon and
_'Sibeon. These selections were based on previous
solution thermodynamic evaluations and literature
studies, fi'Sialon is a solid solution of/3-Si3N 4 and
AI203 •AIN. O'Sialon is a solid solution of Si2N20 and
AI203. Sibeon is a solid solution of/3-Si3N4 and
Be2SiO4. Because none of these materials were
available commercially, high-purity single-phase
materials were produced in the laboratory. This
required considerable effort, especially in the
preparation of high-purity powders.

Assessment of the three silicon metal oxynitrides
as potential die and container materials was performed
using sessile drop tests, capillary rise of molten silicon,
and Knudsen cell examination of the vapor species

above molten silicon in contact with the refractory
materials. It was shown that/3'Sibeon and/3'Sialon are
very resistant to molten silicon attack, especially if they
are used in an environment of an inert atmosphere.

4CNTD: A Chemetal Corp. acronym for their proprietary dense CVD coating.

5Of the several Sialons known, _'Sialon is a solid solution of/3-Si3N4 and Ai203.AIN, and O'Sialon is a solid

solution of Si2N20 and AI203.
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Table 10. Vapor Pressures of Main Speciesa Detected in the Knudsen Cell at 1430°cb

Vapor Pressure (N/m2) Over

Species SiO2 BeO AI20 3 SiC Si3N 4 Mullite Glass

Si

Si 2

SiO

Be

AI20

AIO

AI

Si2C

Si2N

N2

4.35 x 10 -2 2.02 x 10 -2 3.54 x 10 -2

1.41 x10-4 2.12x10 -4 1.41 x10 -6

2.32 1.41 2.73

1.31 x 10 -2

7.80 x 10 -3

1.01 x 10 -3

9.72 x 10 -3

4.65 x 10 -4

1.31 x 10 -4

3.86 x 10 -4

1.21 x 10-3

6.08 x 10 -4

1.11 x 10 -3

7.09 x 10 -2

8.40 x 10 -3

1.52 x 10 -1

1.82 x 10-3

3.24 x 10 -4

aSpecies confined to those detected above 1.01 3 x 10 -4 N/m 2 (1 x 10 -9 atm).

bTime at temperature, 3 h.

The following observations were noted with
respect to their performance as die and container
materials:

(1) Mechanical Stability. Sibeon and Sialon are both
fabricated at 1750 °C and are expected to be
stable at temperatures around 1412 °C, the
melting point of silicon. These materials do not
show phase changes below these temperatures.

(2) Dimensional Stability. For dies, a dimensional
stability to 0.5 mil over a 24-h period is
required. The Battelle study did not indicate
any significant erosion of material, but
enhanced erosion may occur with the use of
flowing silicon. Silicon ribbon must be grown
using these die materials to determine quanti-
tatively the dimensional stability of the dies.

(3) Chemical Stability in Molten Silicon. In sessile

drop tests, the beryllium and aluminum con-
tents of 100 to 200 mg silicon samples were
lower than found for any other metal cation-
containing ceramic. Although these results
were very encouraging, evaluation of silicon
ribbon formed using these materials would be
required before a complete assessment could
be made.

(4) Fabrication of Dies and Containers. The
Sibeon and Sialon materials were developed

primarily for die applications. It was demon-
strated that dies and containers could be
made from these materials, but studies of the

sinterability of their powder mixtures would be
required ('the dies were hot pressed).

(5) Capillary Rise. Wetting angles of Sibeon and
Sialon are low enough (49 and 37 deg,
respectively) to enable a capillary column of
silicon 1 to 3 cm wide x 0.01 cm thick to be

supported to a minimum height of 2.5 cm.

In summary, specific compositions of solid solu-
tions of high-purity silicon-aluminum-oxynitride (Sialon)
and silicon-beryllium-oxynitride ('Sibeon) were shown
to be promising refractory materials for containing
molten solar-grade silicon during silicon ribbon growth.

Well-controlled processing schedules were
developed for the fabrication of high-purity Sialon and
Sibeon materials. Essentially, the impurity content of
the hot-pressed ceramics originated only with the
impurities that were present in the original starting
powders. A ceramic shaping die successfully was
formed by diamond machining of a hot-pressed blank.

Evaluation of the interactions of these ceramic
materials in contact with molten silicon indicated that

solid solutions based upon fl-Si3N 4 are more stable
than those based on Si2N20. Sibeon is more resistant
to molten silicon attack than is Sialon. Both materials
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preferablyshouldbeusedinaninertatmosphererather
thanundervacuumconditionsbecauseremovalof
oxygen(asSiO)fromthesiliconmeltenhancesthe
dissolutionof aluminumandberyllium.Thewetting
anglesofthesematerialsarelowenough(37degfor
X = 0.75_'Sialonand49degforX : 0.35Sibeon)
forthesematerialstobeconsideredasbothdieand
containermaterials.

Key Accomplishments. The key accom-

plishments of the Battelle Columbus Laboratories R&D
are:

(1) A new material, silicon beryllium oxynitride,
was developed and shows promise as a die
material.

(2) Extensive thermodynamic data were gener-
ated concerning the interaction of molten sili-
con with refractory materials. These data give
a better insight into the processes occurring
between molten silicon and potential die and

container materials.

c. Coors Porcelain Company. Mullite
Ceramic Development. To support the development of
the SOC process by the Honeywell Corp., it was found
necessary to improve the compatibility of available
ceramic materials with silicon. The variety of ceramics

initially studied by Honeywell ranged from those that
were incompatible to marginally acceptable. The most

satisfactory performance of the available ceramic
materials was exhibited by mullite (2SIO2-3AI203).
This material has a melting point above 1800 °C and a
thermal expansion of about 5.1 x 10-6/°C compared
to about 4.0 x 10-6/°C for silicon. Thus, its primary

properties generally are compatible. In the course of
development of the SOC process, however, two sub-
stantial difficulties were encountered with conventional
commercial mullite:

(1) The thermal expansion match was not ade-
quate when perforated large sheets of mullite
were used.

(2) Commercial purity was not adequate.

Consequently, a study was instituted with Coors
Porcelain from October 1977 to April 1979

(Reference 67).

The Coors study consisted of the following devel-

opmental activities:

(1) Mullite composition variations.

(2) Mullite starting material variations.

(3) Manufacturing process cost analysis.

(4) Perforated sheet.

(5) Contact angle measurement.

(6) Preliminary crucible development.
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The first five of the above items of the Coors

study were in direct support of the Honeywell effort.
The last item was an attempt to evaluate the potential
of mullite as a reusable replacement for silica. Pro-
gress was made in all developmental areas with
degrees of success ranging from good to excellent.
The effort was terminated when it was realized that
solar cells made from SOC sheet were unlikely to
meet efficiency performance requirements. However,
in the course of this study, a mullite composition was
developed that had a thermal expansion that not only
matched that of silicon, but continued to do so even as
the thermal expansion of silicon changed with tempera-
ture. Perforated substrates were developed that enabled
back contacts to be made to devices. At the melting

point of silicon, the corrosion rate of mullite was
determined to be less than 1 #m/h.

The technology development for compatible
mullite compositions was complete and successful
with good thermal expansion matches being achieved.
Molten silicon was contaminated by the mullite, specifi-

cally with respect to aluminum that acted as an acceptor
impurity. More information on this contamination problem
is available in a description of the SOC process (see
Reference 58). Manufacturing methods were developed
capable of producing 12 cm x 1 m mullite sheets with
about a 50% perforated area. These sheets were suc-

cessfully coated by molten silicon. Cost projections for
this manufactured material were generally consistent with

the requirements of the SOC process. Sensitivity of the
SOC product to variations in the ceramic substrate price,
however, was quite high. The precision with which the
ceramic manufacturing process could be projected was
not sufficient to ensure the economic viability of the

entire sequence.

Evaluation of these materials for use as crucibles
led to the conclusion that aluminum contamination
would limit their usefulness to situations in which the

need for the chemical purity of silicon was less severe,
such as for use in infrared optics.

d. Tytan Corp. From December 1977 to
June 1979, Tylan Corp. was under contract to develop
Vitre-Graf coatings on mullite (Reference 68). A tech-
nical and economic evaluation was made of this pro-

prietary, glass-like, carbon coating applied to mullite
and graphite that would be used either in silicon sheet
manufacture or in containerware applications. Prelimi-

nary evaluations had indicated that the glassy carbon
coating reacted with molten silicon to form a silicon
carbide reachon layer that seemed to serve as a diffu-
sion barrier to prevent further silicon reaction.

The technical evaluation consisted of manufac-

turing test samples of several materials using a variety
of processing parameters with a preselected matrix.
Tests (primarily of coating appearance, adherence,
and silicon reaction behavior) were used to evaluate
the coatings. These tests indicated that most graphite
and carbonaceous materials used as substrates will

produce a visually acceptable coating having excellent
adherence over a wide range of processing param-



eters.Nosetof parameters,however,produceda
coatingthatcouldwithstandthechemicalattack of

molten silicon and prevent its reaction with a graphite
substrate. The primary application of graphite compo-
nents was for containerware that required long-time
exposure to molten silicon. The conclusion of this

study suggested that the glassy carbon coating might
provide protection for periods of only 30 min or less
and, therefore, was not suitable for the intended
application.

Tests conducted on the glassy carbon glaze
applied to a porous mullite formulation indicated that
performance was satisfactory for manufacturing of
SOC-based solar arrays. When this material was
tested on Type K mullite, developed specifically for
solar arrays, it was found that coating performance
was generally insensitive to coating processing param-
eters, and the selected parameters could be cost-
optimized. However, the SOC option did not meet cost
or performance objectives and was not pursued.

e. RCA Laboratories. The original contract
with RCA was for development of the Stepanov or the
Inverted Ribbon Growth Process. It soon became
apparent, however, that the die materials used in this

process were a limiting component. Subsequently,
RCA's work evolved into the development and evalua-
tion of die materials for use in the growth of silicon
ribbons by the inverted ribbon growth process. Work
was conducted from 1977 to 1980 (Reference 69).

Efforts were primarily directed toward CVD Si3N 4
and silicon oxynitride coatings. Si3N 4 layers were
deposited on various substrates by reaction between
silane (Sill4) and ammonia (NH3). The carrier gas was
either hydrogen or nitrogen and the deposition temper-
ature was 1000 °C. Silicon oxynitride coatings were
prepared in a similar manner except that nitrous oxide
(N20) was introduced as the oxygen-containing reagent.
Coatings were evaluated by both sessile drop and ribbon
growth experiments. In addition, silicon ribbon was
grown using a CVD Si3N4-coated die.

The thermal stability of CVD SixNy layers in contact
with molten silicon were studied by x-ray analysis. The
results indicated that these layers were converted to the
alpha and beta phases of Si3N 4 with the beta phase pre-
dominating. The beta-phase content increases with time,
as also was observed in tests on CVD Si3N 4 layers. In
the latter case, however, the alpha phase was the domi-
nant phase. RCA results indicated that the beta phase is
the more stable form in contact with molten silicon. This

explains why CVD oxynitride layers seemed to be more
stable in contact with molten silicon than are CVD Si3N 4
layers. The oxygen present in the oxynitride layers
apparently is removed during contact with the silicon

melt with simultaneous conversion of oxynitride to Si3N4,
principally the beta form.

f. Eagle-Picher Industries, Inc. In August 1977,
EPI was awarded a contract to conduct a study to
develop methods to process and fabricate selected
refractory materials into forms resistant to the corro-

sive action of molten silicon (Reference 70). The mate-
rials also were to be amenable to the production of
ribbon-forming dies and containers for molten silicon.

EPI assembled a team that served as the prime
contractor with overall management and primary fabri-
cation responsibilities. The Chemetal Corp. served as
a subcontractor to apply selected coatings on sub-
strates prepared by EPI. It would use a process-variant
of CVD that Chemetal designated "Controlled Nuclea-
tion Thermal Deposition" (CNTD). The CNTD coatings
have fine grains and were expected to be more dense
and resistant to chemical attack than ordinary CVD
coatings. UMR investigators explored the previously
incomplete area of atmosphere control and characteri-
zation. They were to determine the effect of atmo-
sphere control on reactions and interactions at the
molten silicon/substrate interface.

The materials systems evaluated were less costly
than other high-density, high-purity ceramics of interest
because the substrate could be fabricated from less

costly, relatively impure materials. The high-purity
coatings were to provide the barrier to the molten sili-

con in one direction, and to autodoping by impurities
in the other direction.

The primary candidate materials studied were silicon
carbide and silicon nitride. The materials of secondary
interest were aluminum nitride, silicon oxynitride, and the
Sialons. The silicon carbide and silicon nitride CNTD

coatings, hot-pressed over substrates of the same mate-
rial, were quite resistant to the corrosive action of molten
silicon. These coatings were characterized at EPI. They
were uniform in thickness, dense, and fine grained. The
adhesion of the coatings to the substrates was adequate
for tests conducted by the program.

Sessile drop melting experiments were carried out
on both SiC and Si3N 4 coatings in an atmosphere of
controlled partial pressure of oxygen in an inert gas
ambience. In all tests, the contact angle reached an equi-
librium value after about 40 min. For Si3N 4 coatings, the
initial contact angle ranged from about 90 to 65 deg, and
finally equilibrated between 60 and 50 deg. For the SiC
coatings, the initial range was 50 to 45 deg, finally
equilibrating between 30 and 27 deg.

The contact angle for SiC was about 10 deg less
than previously reported in the literature. It was noted
there was a relationship between the contact angle
and the oxygen partial pressure for both of these
coating systems over the range of 10-1 6 to 10 -1 9
atmosphere. These data suggested that the contact
angle decreased with decreased oxygen partial
pressure in the sessile drop environment.

Investigations were conducted to determine if the

nature of the CNTD-coated surface changed during the
sessile drop experiments. The coatings were analyzed
outside the drop area by Auger spectroscopy to deter-
mine if the surface chemistry was altered. Silicon,
nitrogen, carbon, and oxygen were detected as in the
Si3N 4 coatings. A detectable decrease in the nitrogen
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contentof thesurfacewasfound,suggestingthat
nitrogenlossfromthecoatedsurfaceoccurredduring
thesessiledropexperiments.

Photomicrographsofthemoltensilicon/CNTDSiC
andSi3N4 interfacessupportedthegeneralmacro-
scopicobservationthatthecoatingsunderwentmini-
malcorrosivepenetrationbymoltensilicon.

EPIfabricatedcruciblesofsiliconnitrideandsili-
concarbide,coatedwithlikematerialsbytheCNTD
process,anddeliveredthemtoJPL(Figures49and
50).One-piecediesalsowerefabricated.Greatdiffi-
cultywasexperienced,however,incoatingthevery
narrowslots.A two-piecedesignwasdevelopedthat
thenalloweddiesto befabricatedandcoated
successfully.

Figure 50. CNTD-SiC-Coated SiC (with 1% by
Weight of Boron) Two-Piece Die,
Assembled

(a) CNTD SiC ON HOT-PRESSEDSiC (1 wt% B)

(b) CNTD Si 3N4 ON HOT- PRESSED$13N4 (4 wt% MgO)
I

Figure 49. CNTD-Coated Containers, as Delivered

g JPL In-House: Sihcon/Refractory Material
Compatibility. Efforts were started at JPL in early 1976
to investigate the compatibility of various refractory
materials that were to come in contact with molten sili-

con (References 71 and 72). Dies and containers for

molten silicon were considered major limiting factors
in the production of silicon sheet material. JPL efforts
primarily involved:

(1) Sessile drop testing with in-situ (at temperature)
photographs of molten silicon/substrate wetting
angles (Figures 51 and 52). (In Figure 52, the
total elapsed time is about 3 min; surrounding
lines are reflections from heater element.) Sub-
sequently, wetting angles were measured from
these photographs (Figure 53).

(2) Post sessile drop test, cross-sectioning, and
microstructural/interface examination.

(3) Quantitative chemical analysis of silicon that
had been molten in contact with the refractory
materials.
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A goal of these activities was to screen numerous
candidate materials for their potential use as die or
die/container components in silicon crystal growth
apparatus. For example, carbon dies used by both
IBM and MSEC caused SiC formation in the growing
silicon ribbon and subsequent degradation of solar cell
efficiency.
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Sessile-Drop Test Equipment

More than a hundred sessile drop tests were per-
formed over a 2 to 3 year period. Classes of materials
tested included: carbon, carbides, nitrides, Sialons,
oxides, and others. Most samples were procured com-
mercially except for some Sialon material. Some mate-
rial also was obtained through FSA subcontractors
who were developing specialized materials for these
applications. Sample fabrication techniques were quite
varied and encompassed samples prepared by firing,
siliconizing, reaction-sintering, pyrolysis, hot-pressing,
CVD, and other preparative techniques. In all, more
than 50 different material/processing combinations
were subjected to the evaluation.

Examples of types of materials evaluated were:
glassy carbon, silicon carbide, silicon nitride, boron
nitride, Sialons, and mullite. Except for boron nitride
and mullite, density played a key role in limiting the

Figure 52. Silicon on Si3N4, Melting and Spreading to Mechanically Stable Contact Angle
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extentoftheinterfacereactionof thesematerials.Also
importantwastheprocessbywhichthematerialwas
made.
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Figure 53. Wetting Angle Versus Time from Melt for
Molten Silicon (1430 +_ 10°C) on Various

Refractory Materials

For examDle, SiC layers produced by CVD at
1400 °C exhibited a much higher rate of degradation
when in contact with molten silicon than did CVD SiC

produced at or above 1600 °C. Purity was another
critical aspect of the refractory contact materials.
Sintering aids used in hot-pressed or sintered materials
would inevitably be dissolved by the silicon sessile
drop. Highest-purity materials were produced by CVD.

Screening tests consisted of a nominal 40-min,
molten-silicon, contact time at 14300C in a flowing-

helium, graphite heater-element furnace.

Subsequentiy, each sample was sectioned,
mounted, polished, and sometimes etched for study
under a microscope. Nearly all samples showed some
evidence of second-phase precipitations in the silicon
matrix (Figure 54) and/or interface reaction as a result
of contact (Figure 55). The intrinsic solvent nature of
silicon was demonstrated. Best candidate materials

(alternatives to fused silica) that emerged from this
program were high-temperature chemical-vapor-
deposited Si3N4 and SiC.

2. Characterization of Defects: Materials
Research, Inc.

The main objective of this program was to

develop imaging techniques allowing rapid, repro-
ducible, and accurate quantitative evaluation of silicon
sheet defect structure (References 73 and 74).

Defect data accumulated for many samples would
allow potential cross-correlation among structures that
revealed a specific sheet fabrication technique and/or
a resultant cel! efficiency. Quantified structural defects
included grain and twin boundaries, precipitates, and dis-
locations. Quantitative characterization of these structural

defects, revealed by etching the surface of silicon sam-
pies, was performed using a Quantimet 720 Image Ana-

(a)

$1L CON MELTED

ON HOT PRESSED;,

Si3N 4

1--------60,u.-----4
I

PHOTOM ICROGRAPH OF SILICON MICROSTRUCTURE AFTER
SIRTL ETCH. NOTE DISLOCATIONS AND IMPURITY PHASES

(ARROWS)

(b) SCANNING ELECTRON MICROSCOPE PHOTOMICROGRAPH
OF GRAIN BOUNDARY IMPURITY PHASE. EDAX READINGS
IN AREA INDICATED BY THE ARROW SHOW:

HIGH =A], LOW =Si, AND VERY LOW =Cu

Figure 54. Photomicrographs Showing Second- Phase Precipitates in Silicon Matrix
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Si3N 4

si

Figure 55. Particles Appearing as Si3N 4 at Si/Si3N 4 Interface and Slight Silicon Permeation into Substrate,
Hot-Pressed Si3N 4

lyzer and a reflective-light microscope stage. This optical
imaging system could differentiate and count 64 grey
levels between black and white. It also would character-

ize structural defects by measuring their length, perim-
eter, area, density, spatial distribution, and frequency dis-
tribution (in any preselected direction), and was program-
mable in these measurements. A program that auto-
mated the defect-counting procedure was developed for
a PDP11 computer. The Quantitative Image Analyzer,
however, was extremely sensitive to optical contrasts of
various defects. To obtain reproducible results, therefore,
the contrasts produced by various defects had to be sim-
ilar and uniform for each defect type along the entire sur-
face area of samples to be analyzed. To achieve this uni-
formity, a chemical cleaning and polishing technique was
developed for the diverse silicon samples obtained from
Mobil Tyco, Wacker, Motorola, and IBM.

3. Growth Process Studies: Solar Energy
Research Institute

a. Sofid/Melt Interface Studies of High-Speed
Silicon Sheet Growth. The growth kinetics and growth
forms of silicon sheet crystals nucleated at a small diam-

eter were investigated during a 1-year study (July 1983
to July 1984) at SERI (Reference 75). Radial growth-rate
anisotropies and limiting growth forms of point-nucleated,
dislocation-free silicon sheets spreading horizontally on
the free surface of a silicon melt were measured for
(100), (110), (111 ), and (112) sheet planes. Movie
photography (16 mm) was used to record the growth
process. Analysis of the sheet edges led to predicted

geometries for the tip shape of unidirectional, dislocation-
free, horizontally growing sheets propagating in various
directions within the abovementioned planes. Analysis
also provided a crystallographic description of the radial
leading edges of the solid/liquid interface during flat-top
transition growth in Cz pulling. Similar techniques were
used to study polycrystaltine sheets and dendrite propa-
gation. For dendrites, growth rates of 2.5 m/min and
growth rate anisotropies on the order of 25 were
measured.

Included in this study was a feasibility demonstration
of a crucible-free horizontal (CFH) ribbon growth method.
The top of a large-diameter, vertical, rotating silicon poly-
crystalline rod was melted by the energy emitted by a
specially shaped RF induction coil. The coil shape pro-
vided a cool zone from which horizontal ribbon growth
took place. The approach was a much simplified modifi-
cation of the LASS technique (Section IV.B.5.a.). Replen-
ishment was provided by slowly moving the pedestal rod
upward. The liquid zone was shallow so that thermal
convection effects were minimal. There was no contact

of foreign materials with the liquid silicon so the sheet
purity was comparable to that of FZ ingots. The poly-
crystalline silicon sheet that was produced had both
large-grained and small-grained regions. Solar cells made
from large-grained regions of the silicon sheet had per-
formance characteristics (efficiencies) comparable to
those of control cells made from Cz material. However,
for CFH ribbon growth to be a viable method, more work

is required to refine the hot-zone control, especially under
the growing ribbon.
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Theinvestigationsonidealizedgrowthforms
indicatethatthe(111) planeswithlowsurfacefree-
energiesdominatethesheettipgeometryatthe
solid/liquidinterface.Theydeterminethegrowthform
ofradiallygrowingsheetcrystals(throughtheir
intersectionwiththesheetplane),andcontributeto
growthrateanisotropiesbecauseoftherelative
difficultyof newgrowthnucleationonthelowfree-
bond-density(111)surface.These(111) planesalso
playadeterminingroleinfastdendriticgrowthby
virtueofthehighfree-bonddensityassociatedwith
reentrantedgesata(111) twinboundary.Earlierwork
onedge-supportedpullingofsiliconsheetsshowed
that(111)twinplanescanblockthespreadingof
spuriousrandomgrains.A similarmechanismhas
recentlybeenfoundtobeimportantinstabilizingthe
crystalstructureofhorizontallygrownsheets.In
dendriticwebgrowth,(111) twinplanesarekey
elementsofthegrowthprocess,andthe(111)web
surfaceisveryhighinquality.Theequilibrium
structureof long,multicrystallinesiliconsheetsis
dominatedbylongitudinalgrainswith(111) boundaries
andnear<110> surfacenormals.

Conclusionsofthisresearchare:

(1) Thepropertiesofthe(111)surfaceinsiliconare
ofmajorimportanceforsheetcrystalgrowth.

(2) The(111)planefacetingdominatestheedge
geometryforradiallyspreadinggrowthduring
theflat-toptransitionphaseofCzcrystal
pulling.

b. High-Purity Silicon Crystal Growth
Investigations. Using a high-purity growth technique
such as float-zoning, SERI, in this 1984 to 1986 study,
investigated silicon crystal growth parameter effects
on minority carrier lifetime and solar cell efficiencies
(Reference 76).

The goals of this SERI study were to:

(1) Optimize dopants and minority carrier lifetime in
FZ material for high-efficiency solar cell applica-
tions, including alternative dopants, and the role
of evaporation and growth-parameter variations.

(2) Improve the understanding of lifetime degra-
dation mechanisms (point defects, impurities,
thermal history, surface effects, etc.).

(3) Characterize lifetime-related crystallographic
defects in silicon crystals via x-ray topography.

Float-zoning of high-purity, dislocation-free silicon
was conducted both as a tool to study minority carrier
lifetime dependence on various growth parameters,
and also as a means of growing long-lifetime, heavily-

doped, p-type silicon for use in solar cells. Lifetime
values of 303 #s for 0.46 [_-cm resistivity and 21 4 #s
for 0.36 _-cm resistivity were achieved when gallium

was used as the p-type dopant in < 1 00 > crystals.
Dislocation-free crystals doped with boron, aluminum,
indium, and gallium also were grown over a range of
resistivities with dopant species as a parameter. Results
of the doping study are summarized in Figure 56 where
an envelope of upper and lower bounds is drawn for
lifetime versus concentration. Gallium and boron seem to

dominate the upper bound, and aluminum and indium
dominate the iower. Heavy doping with dislocation-free

growth was not achieved for indium, however, and there
are not many points to evaluate in the figure. Two boron

crystals behaved quite differently, one lying near the
upper bound and one near the lower. The upper bound
indicates that the following resistivity lifetime combina-
tions are feasible with careful float-zoning, using gallium

or possibly boron as a dopant:

Resistivity, Lifetime,
B-cm /_s

1.0 600

0.5 340

0.2 110

0.1 40

The effect of crystal cooling rate on lifetime was
determined from cooling rates ranging from 50 to
600 °C/min. The lifetime decreased with increasing

cooling rate for both dislocation-free and dislocated
crystals. The presence of dislocations, however, had a
much more dominant effect in degrading lifetime than did

cooling rate. Figure 57 is a plot summarizing results of
the lifetime versus cooling rate investigations.

Calculation techniques and pertinent property data
were developed for a comparison of vacuum and gas
ambients as they affect impurity concentration profiles in
FZ and cold-crucible-grown crystals. Graphical impurity
profiles were obtained for various segregation and evap-
oration coefficients in the general case and also for the
specific impurities in silicon of AI, Sb, As, B, Cu, Ga, Au,
In, Fe, Mn, and P This exercise indicated that multiple
pre-passes in vacuum prior to the crystal growth pass
were helpful in reducing the concentration of most
metallic impurities to negligible levels.

X-ray topography was used to examine both micro-
defects in dislocation-free silicon crystals and dislocations
and lattice-plane curvature in silicon ribbons grown by
various methods. Improvements also were made in life-
time measurements of heavily-doped silicon.

Key Accomplishments. The key accom-
plishments of the SERI R&D are:

(1) Minority carrier lifetime values of > 200 _.s for
0.36 ft-<;m resistivity were achieved for Ga-
doped (p-type) silicon.

(2) The lifetime decreased with increasing cooling
rate for both dislocation-free and dislocated

crystals
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(3) Multiple pre-passes in vacuum prior to FZ
growth were found to reduce the content of
most metallic impurities (by 2 to 4 orders of
magnitude) to negligible levels.

(4) The effects of impurity redistribution, under the
combined actions of segregation and evapora-
tion during crystal growth, were investigated
mathematically.
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Figure 57. Bulk Minority Carrier Lifetime Versus
Cooling Rate /or Two Crystals

C. SUMMARY

Ten efforts in the category of Support of Materials
Research were carried out by nine organizations. These
included several activities for the development and evalu-
ation of materials for use in contact with molten silicon,
studies of gas-phase reactions involving silicon, and
fundamental studies of crystallization behavior. These
studies were valuable both in directly supporting the sili-
con sheet development efforts and providing contribu-
tions to the silicon technology base.

Materials development studies included mullite
(3AI203-2SIO2), primarily in support of the Honeywell
SOC process. Some crucible evaluation was included.
Glassy carbon was developed and characterized at Tylan
Corp. A variety of silicon carbides, silicon nitrides, and
silicon oxynitrides were developed at Battelle Columbus,
RCA Laboratories, and EPI.

Studies that emphasized characterization of
materials and reactions included studies of gas-phase
reactions at UMR and extensive contact-angle determina-
tions at JPL. Methods to determine microstructure

quantitatively were developed at Materials Research Insti-
tute. A study of fundamental crystallization front behavior
for silicon from the melt was conducted at SERI.

The following major accomplishments were
achieved in the Materials Research program:

(1) JPL conducted screening tests to determine
the compatibility of molten silicon with more
than 50 types of material/processing com-
binations. Potential materials for further

detailed screening tests were identified, and
the intrinsic solvent nature of molten silicon
was demonstrated.
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(2)

(3)

(4)

(5)

UMR conducted investigations in the devel-
opment of refractory dies and containers for
use with molten silicon. The partial pressure

of oxygen in MSEC's EFG ribbon furnace
was measured, and the results led to further
refinement of the furnace atmosphere control

system. Test sample/silicon interface regions
also were characterized for composition,

phases, microstructure, and changes.

In a study of die and container materials for
molten silicon, Battelle Columbus Labora-
tories developed silicon beryllium oxynitride
as a very promising but expensive die
material.

In support of Honeywell's study of the SOC
process, the Coors Porcelain Company
developed a mullite composition having a
thermal expansion that closely matched that
of silicon. The corrosion rate of mullite was
determined to be low, less than 1 /_m/h at the

melting point of silicon.

Tylan Corp. conducted a study of a proprie-
tary glass-like carbon coating, Vitre-Graf, that
was applied to mullite and graphite, it was
demonstrated that coatings could be applied
to different grades of mullite. Such coated
mullite substrates were successfully coated

with silicon in Honeywell's S©C process.

(6)

(7)

(8)

(9)

RCA grew silicon ribbon using a CVD Si3N4-
coated die and determined that the beta-phase

of Si3N4 is most impervious to attack by
molten silicon.

(10)

In a program aimed at developing refractory
materials for use with molten silicon, EPI pro-

duced dense, fine-grained coatings resistant
to molten silicon. Prototype containers and
dies were fabricated in a manner suitable for

high-volume production.

Materials Research, Inc. developed imaging

techniques that allowed rapid, accurate, and
reproducible measurements of twin and
dislocation densities over large surface areas
of silicon sheet.

SERI showed that the properties of the < 111 >
surface in silicon are of major importance for
sheet crystal growth. Feasibility also was
demonstrated for a CFH ribbon growth

process.

In a study of high-purity crystal growth, SERI
achieved minority carrier lifetime values
greater than 200 _.s for 0.36 _-cm resistivity.
gallium-doped (p-type) silicon. It was deter-
mined that the lifetime decreased with

increasing cooling rate for both dislocation-
free and dislocated crystals.
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SECTIONVII

Supporting Research
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Poor  ALITY
Stress/Strain

A. INTRODUCTION

During the growth of a crystal directly from a pool of
molten material, adjacent regions of the crystal will exist
simultaneously at different temperatures. The various
regions also will cool at different rates. Because local
crystal-lattice dimensions depend directly on local tem-
peratures, thermal gradients in the cooling crystals result
in stresses between adjacent regions of the crystals. The
magnitude of the stresses varies directly with the temper-
ature gradients. In the case of slowly grown symmetrical
crystals (e.g., Cz, FZ), these stresses effectively are
negligible. However, the stress problem is critical in the
case of asymmetrical ribbon crystals formed at high
linear growth rates.

The existence of stress during cooldown manifests
itself in the ribbon product in one or more of the
following ways:

(1) Plastic strain results in buckling (Figure 58) or
bowing (Figure 59)in the cooling ribbon. This
yields non-fiat wafers that are difficult and
expensive to process into solar cells. The struc-

Figure 58. Buckled Sihcon Ribbon

tural defects generated through accommodation
of the stress also result in lowered minority
carrier lifetime in the wafer. This, in turn, leads to
reduced cell performance.

(2) To accommodate stresses, plastic strain may
occur in the plane of the ribbon. This results in a

flat, but highly defective ribbon (Figure 60) that is
manageable through processing, but yields
devices with poor performance.

(3) Ribbon which has deformed plastically can
retain considerable residual stress. These

ribbons are subject to catastrophic failure
during processing or in the field (Figure 61).

(4) Ribbon can deform itself elastically during
growth and bend away from the immediate area
around the crucible. In doing so, the ribbon
moves out of the proper thermal environment
needed for continued steady state growth.

To overcome the problem of stress associated

with defects, several modeling studies were supported
in the Task to understand better the processes of
stress development and strain and how to limit them.
The mechanical properties of silicon at temperatures
up to its melting point were measured to provide the
boundary condition data for the modeling work. Studies
were conducted by the University of Kentucky, UIC, JPL,
and Westinghouse. Summaries of both the contract and
in-house R&D tasks that addressed the problems of
stress and strain in silicon ribbon growth are included in
this Section.

Figure 59. Bowed Silicon Ribbon

Figure 60. X-Ray Topograph of Defect Structure in Sificon Dendritic-Web Ribbon
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Figure 61. Catastrophic Failure of HJghty Stressed
Ribbon

B. IMPLEMENTATION

1. Stress/Strain Analysis of Silicon Ribbon:
University of Kentucky

This contract with the University of Kentucky,

begun in 1982, focused on the problem of stress/strain
during sheet growth (Reference 77) The three inter-
related activities included:

(1) Elastic and plastic stress/strain modeling.

(2) Sheet-defect structure evaluation, such as
dislocation mapping.

(3) High-temperature silicon sheet tensile tests,
started in mid-1984.

A major goat of the silicon ribbon stress/strain
modeling activities was to obtain improved predictions
for stable ribbon growth that incorporate criteria for
defect formation, plasticity, and creep. Based on work
of Sumino and Haasen, a stress/strain model was devel-

oped to predict both structure generation (dislocation
multiplication) and critical buckling parameters (ribbon
thickness and width). Their results showed that some
buckling modes grow in time, and others damp out and
probably do not affect ribbon growth. This specific result
is believed to be new in creep buckling of any general
plate and reflects the fact that no external loads are

applied.

Under the assumption that ribbon dislocation

density must be relatively low to make good PV cells,
the adequacy of an elastic-only analysis was demon-
strated. Critical (minimum) buckling thickness can be
arrived at by elastic analysis, thus saving the time and
expense of more complicated plastic models.

The University of Kentucky dislocation and buck-
ling models handle plasticity, creep, and dislocation
generation in silicon as a function of strain rate, initial
dislocation density, and oxygen concentration. One out-
put of the above models was the dislocation density
contour plot. It graphically indicates X and Y coordinate
dislocation densities per square centimeter for ribbon
grown from a specific thermal profile. An example of
these plots is shown in Figure 62.

In the matter of making predictions about buckling,
the University of Kentucky models were used to gen-
erate buckling mode shape outputs similar to that
shown in Figure 63. The parameter X2 is positive and
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largest for this mode (dominant mode). [hrougrl use of
a constant melt-face dislocation density and a specific
thermal profile (such as one used to grow web den-
dritic material), critical or maximum ribbon widths also
were catcuiatecl. When ribbon widths were analytically
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varied and in-plane stresses were subsequently calcu-
lated, the model either predicts an uncontrolled growth
in dislocation (model divergence) or a "small" increase
in dislocation density (model convergence). Another
important output of the University of Kentucky buck-
ling model is the predicted critical ribbon thicknesses
for buckling as functions of thermal profiles and ribbon
geometry.

The University of Kentucky has documented a
new buckling analysis for the "plastic" range of silicon
ribbon. Once in-plane stresses are known, the new
version of buckling analysis allows for prediction of
buckling modes, if any.

The main limitation now is not in the buckling analy-
sis itself, but in understanding the nature of in-plane
stresses because of a lack of knowledge of high-
temperature, stress-field, silicon-dislocation behavior. In
this regard, the University of Kentucky has developed a
model/computer program that wilt track the motion of a
specific dislocation during ribbon growth. This model
uses elastic stress field mechanics. In the area of disloca-

tion mapping, dislocations are "inserted" at the ribbon
melt interface at various Y positions. Subsequent motion
of each dislocation is tracked as it moves through the
thermal stress field. To date, evaluation of analytical
results indicate that significant dislocation motion and
multiplication occur within the first 0.5 cm of the 3--cm-
wide ribbon melt interface. A present, limitation of the
approach is the indeterminacy of the number and loca-
tion of dislocations to be inserted.

University of Kentucky investigators also worked on
predicting residual stresses developed in a ribbon grown
in the temperature profile, T(x) = 1372 - 99.83 x +
40c-5X (analytical representation of measured ribbon

profile, provided by Westinghouse). Low residual stress
values were obtained that were relatively consistent with
Westinghouse split-width residual stress measurements.
The maximum (critical) width to which ribbon could be
grown in the same thermal profile was also calculated
with zero starting dislocation (No = 0). A critical width of
about 6 cm is predicted. As the starting dislocation den-
sity increases, however, the critical width decreases. For
example, for No = 3/cm2, the critical width is predicted
to be about 3.5 cm.
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Figure 64. Resolved Shear Stress for Dendritic-Web

Ribbon as Functions o! Temperature and
Strain Rate

The key accomplishments of the this effort were:

(t) An elastic buckling model was developed that
predicts the critical silicon ribbon thickness,
that corresponds to the onset of instability, as
a function of ribbon width.

(2) A viscoplastic strain/stress model based on
Sumino's work was used to generate elevated-
temperature stress/strain curves, as well as to
calculate mobile dislocation multiplication as a
result of stress fields.

(3)

(4)

Computer-generated dislocation maps for den-
dritic web material were very similar to actual
as-grown-ribbon dislocation arrays revealed
by x-ray topography.

Successful high-temperature tests (900 to
1300 °C) on Cz and web material were per-
formed. Resolved shear stress was obtained

as a function of temperature.

2, Study and Analysis of High-Speed Growth of
Silicon Sheets in Inclined Meniscus Configura-
tions: Massachusetts Institute of Technology

High-temperature tensile tests of silicon were con-
ducted as supportive analytical studies. Successful ten-
sile tests on Westinghouse dendritic web and Cz sam-
ples were carried out at temperatures up to 1150 and
1200 °C, respectively. Reproducibility of test results
seemed very good at 1100 °C and 10-4 s-1 strain rate.
Flow stress values for dendritic-web material also were

comparable with Cz data. Figure 64 shows some resolved
shear stress data for dendritic-web material as functions of

temperature and strain rate. The trend of high-temperature
shear stress for web material is consistent with previous
lower-temperature work done by Sumino on Cz material
(starting dislocation density of 2 x 104 cm-2). Cz sam-

ples were used to study effects of laser-cut edges. In this
study, significant differences in stress/strain behavior
were noted for polished versus unpolished edges.

A 2-year contract at MIT had the initial purpose of
examining the relationship between material properties
and transport phenomena during crystal growth in
inclined-meniscus configurations at tow and moderate
growth speeds. The study goals included:

(1) Development of numerical analysis of heat
transfer and capillarity in inclined growth
configurations.

(2) Verification of this model with data supplied by
experimental research groups supported by
DOE.

(3) Development of a thermal stress model to be
incorporated with the heat transfer analysis.
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(4) Parametricstudiesforsilicongrowthina
varietyofconfigurationsto determineoptimal
conditionsforgrowthoflow-stressribbon.

Inadditionto theabovegoals,themorphological
structureofnonplanarsiliconsolidificationsurfaceswas
studiedtounderstandtheeffectsofsmallamountsof
constitutionalundercoolingonthedevelopmentof
cellularinterfaces.

Thefinite-elementanalysisusedforthedetailed
modelforstudyingheattransferandcapillarityin
meniscus-definedsystemswasbasedonthemethod-
ologyalreadyusedbyMITforoptimizingtheEFG
process.Thisgeneral-purposemodelwasdesignedto
modeltheessentialheattransferandcapillarityeffects
inconfigurationsrangingfromverticalandslightly
inclinededge-supportedsystemsto low-anglegrowth
processes.Theprogramwasusedtostudythepara-
metricsensitivityofvariousgrowthgeometrieswith
respectto:

(1) Thermalcontrolandgrowthrate.

(2) Dopantsegregation.

(3) Thermalstress.

(4) Interfacemorphologyandstability.

Thefinite-elementanalysisprogramwasextended
toincludesiliconsheetgrowthininclined-meniscus
configurations.Thisprogramwasusefulinpredicting
theoptimizedgrowthconditionsthatincludedthe
determinationofthemelt/solidinterfaceshape,the
melt/gasinterfaceshapetosatisfythehydrostatics
equation,andthesheetthicknesstosatisfythe
equilibriumgrowthangle.

Theconclusionsofthisanalysisindicatedthat,as
farasmaterialqualitywasconcerned,therewaslittle
to begainedandmuchto loseinmodifyingtheEFG
anddendritic-websystemsto incorporateaninclined-
meniscusconfiguration.Withthisresult,andwiththe
intensifiedProjectemphasisonwebtechnology,addi-
tionalworkonaninclinedgrowthsystemwasdropped
andtheworkwasredirectedtoanalyzetheweb
system.

Thethermal-capillarymodelforsiliconsheet
growththenwasextendedto accountforthefaceted
growthandaccompanyinggrowthratekineticsfound
inthedendriticwebgrowthsystem.Thecrystalthick-
nesswaspredictedasafunctionof thepullspeedand
thelocationofthecontrollingnucleationpointalong
theinterface.Foranidealizedthermalambient,sheet
thicknesseswerepredictedthatwereextremelyclose
toresultsforamelt/solidinterfaceinthermalequilibrium.
Theseresultsimplythatthelocalundercoolingalongthe
interfacedoesnotsubstantiallyalterthethermalenviron-
mentfortheribbonascomparedtothatforanedge-
supportedgrowthsystemwithoutthefacet.

Becauseofafundingcutback,thecontractwas
terminatedpriortocompletionoftheresearch,andno
finalreportwaspublished.Inaddition,theaccuracyof
themodeldevelopedforthewebsystemhasnotbeen
testedandverifiedagainsttheexperimentalresults,as
it wasfortheEFGsystem.

3. ResidualStressesinSheetSilicon:University
of IllinoisatChicago

A noncontact,nondestructive,room-temperature
techniquewasdevelopedtodeterminein-planeresid-
ualstressoverlargespatialareasinshort,flat,thin,
siliconplates(Reference40).Thistechnique(shadow
moir_andlaserinterferometry)wasappliedtocircular
(Reference78)andrectangularplates(Reference79).
Themeasurementwascomparedwithananalytical
result,anddifferencesbetweenthetworesultswere
ascribedto in-planeresidualstresses.Themeasured
strainswereusedinananalysistoobtaintheresidual
stresses.A codewasdevelopedthatproducesathree-
dimensionalplotoftheresidualstressesoverthe
measuredarea.

EFGanddendriticwebsheetsiliconsampleswere
examinedbythistechnique,andFigures65and66
showtheresidualstressdistributionforthesetwo
cases.Itshouldbenotedthattheedgesofthesheet
areincompressionandthecentralregionis intension.
TheEFGsampleshaveaconsistentlyhigherresidual
stress(5to t0r'qegapascals)thanthedendriticweb
sheetsamples!0.5MPa).

4. Stress Determination by X-Ray Diffraction
(Bond -lechnique): University of California, Los
Angeles

This study evaluated the suitability of the bond x-ray
diffraction technique in determining small, local changes
in the bond lengths within silicon as a result of residual
stresses (Reference 80). The technique, which requires
an accuracy of measurement to 8 x 10-5 ,&, was
applied to EFG ribbon. Results indicated that measure-
ments could be made within an approximate precision of
_+10 MPa. Measurements that were obtained indicated a

maximum value of 115 MPa (about the fracture stress of
silicon and one order of magnitude greater than the
results cited earlier for the study by the UIC). Because
the method was found to be extremely tedious and time
consuming, it is; not recommended as a routinely useful
method.

5. In-House Supporting Stress/Strain Research:
JPL

Research at JPL in support of the Silicon Sheet
Task included measurement of the mechanical proper-
ties of silicon as a function of temperature, a finite-

element analysis of stress and strain in silicon ribbon
during the growth process, and a study of the fracture
mechanics of silicon sheet.
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Figure 65. In-Plane Residual Stress Variation Over a
2 x 4 in. EFG Sheet

Figure 66. In-Plane Residual Stress Variation Over a
2 x 2 in. Dendritic-Web Sheet

a. Mechanical Properties Studies. Mechan-
ical property data on silicon were obtained on Cz

material (as-cut and mechanically polished) and
Westinghouse dendritic-web ribbon. Wide scatter was
characteristic of most literature data (References 81
through 87) and JPL data. Attempts to relate this scat-
ter to dislocation density have not proven successful.
Some of the scatter in the JPL data can be a result of

evolving methods for specimen cutting, handling, load-
ing, heating, and instrumentation. As a result, the data
must be regarded as very preliminary.

Testing was done in argon from 800 to 1375°C at
strain rates from 6 x 10-7/s to 1 x 10-3/s. Crystal
orientation of the material also was varied. Dendritic-

web ribbon for testing was cut with the tensile axis in
the 211 direction. Cz material also was tested in this
orientation, 111 face with 211 tensile axis, with the
faces mechanically polished. As-cut Cz material was
tested with a 110 face in the 211 direction and with a
111 face in a 11 0 direction. An extensiometer was
used to obtain strain rate/displacement data, which

varied as a result of sample distortion in the grips,
although crosshead travel speed remained constant.
The available literature data from JPL and from

Schroter, et al. (Reference 82), Yonenaga and Sumino
(Reference 86), and Siethoff (Reference 87) are linearly
extrapolated in Figure 67. The JPL data are 0.2% off-

set data, and the literature lines are lower yield point
(aLyp). JPL data obtained at 800, 900, 1000, and
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1350°ConpolishedCzsiliconaredisplacedabovethe
literaturevalues.Dataobtainedat1200°Cshowsignif-
icantlymorescatter.It ispossibletospeculatethatthe
1200°Cscatteriscausedbytherateofprecipitation
and/orformationofSiO2particlesandiscausedbyheat-
ingratesforthesampleorholdingtimeat1200°C.The
twodatapointsobtainedforWestinghouseribbon(R-3
andR-4)at800°Cfallalmostontheliteraturevaluelines
for800°C.Thus,thereseemstobesignificantdiffer-
encesbetweentheCzandtheWestinghouseribbonas
measuredby0.02%offsetyieldstrength.

Young'smodulusis independentofstrainrateandis
afunctionoftemperatureandcrystalorientation.JPL
dataindicatetheobservedmodulustobeafunctionof
strainrate.Thevaluesobtained,therefore,arenotatrue
Young'smodulus,butratherapseudo-modulus.These
dataareplottedinFigure68(theliteratureroom-
temperaturemodulusisabout20x 106psi).
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Figure 68. Pseudo Modulus of Sihcon as Measured
at JPL

b. Study on Annealing Effects in Low- and
High-Stress Dendritic-Web Ribbon. A systematic study
(Reference 88) was conducted involving measurement
of the structural arid electrical characteristics of tow-

and high-stress silicon dendritic-web ribbon as a
function of annealing temperature in the 450 to
1050 °C range. The lower-stress ribbon had residual
stresses ranging from 1.0 to 9.3 Mdyn/cm2, and the
residual stresses for the higher-stress material were
measured to be between 38 and 40 Mdyn/cm2. These

stresses were measured by Westinghouse.

The results indicated the minority carrier lifetime
of dendritic-web ribbon silicon can be improved with

annealing. The magnitude of the improvement in life-
time depended on the annealing temperature and the
residual stress of the material. On average, material
with lower residual stress improved by an order of

magnitude, and the higher-stress material improved by
a factor of six. The peak in the lifetime improvement
for the higher stress material occurred at a lower
annealing temperature than for the low-stress ribbon.
In both cases, the peak lifetime was at a temperature
lower than the usual processing temperature for
n+-p junction formation, implying that to optimize
fully the solar cell performance, the devices should be
processed at a temperature other than the standard
temperature used.

c. Finite-Element Stress�Strain Analysis. A
finite-element analysis was used to identify and evaluate
the following significant web parameters that would
negatively affect the rapid growth of usable dendritic web
ribbon: elastic, plastic, and creep material properties;
influence of the size of the dendrites; influence of the

ribbon geometry; and the influence of the axial and
lateral temperature distributions. The effects of these
parameters on the buckling, in-process thermal stresses
and residual stresses were evaluated.

A nonlinear analysis was required to predict
accurately the thermal stresses and accurate material

properties up to the melting temperature of the silicon.
A nonlinear simulation of the growth of the silicon
ribbon indicated that the strain and stress history of

the silicon is important in the determination of the
stresses in the ribbon.

To establish a more efficient and better simulation

code to predict the desired parameters of the ribbon, a
special, finite-element code development was initiated.
The code predicts the desired responses of the ribbon
to the parameters. It also permits the calculation of the
shear stresses in the slip directions of interest to the
silicon, the stress redistribution when the ribbon is

arbitrarily cut. and the lateral thermal profile that will
minimize the thermal stresses for any specified axial
temperature distribution.

The simuiation program was developed to predict
the relevant stress/strain parameters for any geometry
(e.g., ribbon, nonagon, cylinders, etc.) at any inclination.

d. Fracture Mechanics Study. A program

dealing with fracture mechanics of silicon was initiated in
1977. Since then, more than 30 papers have been pub-
lished in the area, and four NASA Tech Brief Awards
have been awarded. The highlights of the fracture
mechanics of the silicon program are summarized as
follows:

(1) Developed a standard test method for the
strength of silicon wafers and solar cells (Ref-
erence 89). The mechanical strength and the
nature of the flaws in silicon wafers and solar

cells (chips and cracks) were evaluated by
applying stresses in four-point twisting, as
shown in Figure 69. This unique test method
has been widely accepted by international and
domestic PV industries for quality control and
production-line/proof-testing (References 90, 91,
and 92). The test, which can be used to elimi-
nate defective wafers prior to cell processing
and thereby reduce costs significantly, has been
implemented by Heliotronic GmbH, Applied
Solar Energy Corp., ARCO Solar, Inc., Motorola,
Inc., Mobil Solar Energy Corp., Spectrolab, Inc.,
and Texas Instruments, Inc.

(2) Developed test methodology and generated
data in the area of fracture mechanics of sili-

con (References 93 through 98). The fracture

toughness (KIC) values on the major planes of
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SCHEMATIC

Figure 69. Four-Point Twisting Test of Silicon Wafer

single-crystal and polycrystalline silicon were
determined and are shown in Table 11. Crack-
growth study in single-crystal silicon indicated
lack of subcritical crack propagation at room
temperature in air. Results of this effort have
been used by MSEC, Motorola, and IBM to
enhance production yields, improve solar cell
reliability and durability, and establish mechan-
ical design criteria.

Table 11. KIC Values of Silicon

<100>

<110>

<111>

0.95 MN/m 3/2

0.90 MN/m 3/2

0.82 MN/m 3/2

Single crystal

0.75 MN/m 3/2Polycrystalline

OR:GINAL PAGE IS

OF POOR QUALITY

(3) Applied fracture mechanics to predict allowable

crack size of solar cells for solar module design
(Reference 99) and performed failure analysis
(References 100 and 101 ). A fracture mechanics
technique was used to model silicon ingot
wafering, to predict thickness and diameter
limits for wafering, and to postulate improved
methods (see References 36 through 39).

(4) Fracture mechanics of silicon technology have
been recently extended to evaluate other semi-
conductor materials such as GaAs (Refer-
ences 102 through 105).

C. SUMMARY

The work supported by the FSA Project to solve
the problem of stress and strain in silicon ribbon
growth continued until the end of FY 86. It was not

completed at that time, but substantial progress was
achieved toward understanding the processes at work.
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Mechanicalpropertydataforspecifictypesofsili-
conupto 1200°Carenowadequatetosupportthe
modelingwork,althoughthedatafortemperatures
greaterthan1200°Carestillinadequate.Additional
dataorconfirmingdataforeachspecifictypeofsili-
conmayberequired.Controlof plasticbucklingwill
requirethishigher-temperatureinformation.

Datatakenintheprogramgenerallycorrelatewell
withearlierSuminodata.Thecomputermodelsnow
showgoodcorrelationwithobserveddislocationgen-
erationanddistributions,althoughobserveddisloca-
tiondensitiesaregenerallylowerthancalculated.
Goodagreementisnowseenamongthestresscalcu-
lationsof allProjectresearchers.Atthistime,how-
ever,theeffectof creeprelaxationonthemodeling
resultsremainsinquestion.Applicationoftheresults
ofthemodelingwork,especiallyregardinggrowth
interfacethermalprofiles,hasledtogrowthofribbon
withreducedlevelsofresidualstressandbuckling.

Somemodelingresultspredictthatcriticalmaxi-
mumvaluesofribbonwidthandpullspeedmayexist
thatareonlyslightlyhigherthanpresentlyachieved
values.Variousribbongrowthprocessapproaches
remainthatmaymitigatetheproblem,includingsolid
solutionhardening,controlledtemperatureprofiles
acrosstheribbonwidth,non-perpendicularcrystalliza-
tionfront,andcontrolofstraindistribution.Although
thereisstillsomeuncertainty,thefinalprognosisis
thatincreasescouldbeattainableinribbonarea
growthspeedthatwouldmakewidespreaduseof
photovoltaicspossible.

Majoraccomplishmentsofthesiliconribbon
stress/strainprogramincludethefollowing:

(1) The University of Kentucky developed an elas-
tic buckling model that predicts the critical
ribbon thickness, corresponding to the onset
of instability as a function of ribbon width. A
viscoplastic stress/strain model also was
developed and used to calculate elevated-

temperature stress/strain curves, as well as
calculate mobile dislocation multiplication as a
result of stress fields.

(2) JPL conducted a study of silicon fracture
mechanics, finite-element analysis of stress/
strain, and measurements of silicon mechanical

property data. A standard method was devel-
oped for testing the strength of silicon sheet and
solar ,::ells, using four-point twisting. An anneal-
ing study of dendritic-web ribbon showed that
annealing can improve minority carrier lifetime,
with the degree of improvement dependent
upon the annealing temperature and the residual
stress of the material.

(3) MIT completed a finite-element analysis program
to predict the optimized operating conditions for
an idealized inclined-growth system.

(4) UCI developed a noncontact, non-destructive,
room-temperature technique to determine in-plane
residual stress over large areas in sheet material.
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SECTIONVIII

Conclusions and Assessment

At the beginning of the Silicon Sheet Task Tech-
nology Development program, technical goals were
established for the Silicon Sheet Task to meet the

Project's price goal of $0.50/Wp (1975 dollars). The
Price Allocation Guidelines for both ingot and non-
ingot technologies are presented in Table 12.

The degree of technical success was measured by
the performance of the various technologies against the
goals and schedule of the Project. Individual silicon sheet
technologies received support based not only on their
potential to achieve the Project's goals, but also on their
performance against the Project's goals once the tech-
nologies were funded. In 1982, when the Project was
redirected to emphasize generic research, the program
shifted to focus on the technical barriers that prevented
the various sheet technologies from achieving the

$0.50/Wp (1975 dollars) goal,

The commercial scene clearly reveals the present
status of silicon sheet technology used for terrestrial
photovoltaics. Although thin-film PV modules (specif-
ically, _-Si) are being used for terrestrial power gener-
ation applications, the vast majority of modules pro-
duced and sold still use crystalline silicon solar cells.
Most of these are produced from either Cz or cast
polycrystalline wafers. One family of modules, pro-
duced from ribbon silicon sheet, is offered by MSEC.
Although the cost of crystalline silicon modules is
significantly reduced today, the market price of Cz
silicon wafers is about what it was in 1975. Thus, the

cost of Cz wafers actually has come down in terms of
real dollars. No low-cost, "high-efficiency" sheet, how-
ever, is available in the marketplace.

Both the achievements of the Silicon Sheet Task
and the present status of the individual silicon sheet
technologies are summarized in the preceding sections

of this report. Although the allocated goals of the Project
were not attained, the technical achievements of the
Task are considerable. Ingot technology, for example, is
significantly improved today as compared to where it
was at the inception of the Project (Table 13).

The FSA Silicon Sheet Task is directly responsible
for the semiconductor industry's scaling-up of ingot size
from 3-in.-diameter (1975) to the current production
diameters of 4 to 6 in. and to the 8- to 12-in.-diameter

ingots grown on a nonroutine basis by the silicon manu-
facturers. Now used commercially, semicontinuous ingot
growth (more than one ingot from a single crucible) was
recommended and developed by the Task. In addition
the Task was responsible for the development of fully
automated Cz growth and wafering processes. Three
FSA-supported ingot technologies (Cz, HEM, and UCP)
are used in commercial processes today.

Since 1975, ribbon technology has improved even
more dramatically than ingot technology. Progress in
development of dendritic-web technology is shown in
Figures 36 through 38. EFG ribbon material is commer-
cially available today in modules, and all five processes
listed in Table 14 now are being developed with
private funds.

Historically, it had been anticipated that silicon-

ingot technology, the first to be commercialized, would
be replaced by the lower-cost, silicon-ribbon PV sys-
tems. However, changing module performance require-
ments by the utilities, changes in DOE program scope,
focus, and funding, and frequently disappointing rates of
development of both silicon-ribbon and thin-film technolo-
gies have made it difficult to predict the future for PV
materials technologies.

The requirements demanded by utilities for cost

versus performance of PV modules for large-scale
applications have been calculated and published
recently (see References 4, 106, and 107 ). Although
the results vary in detail, they are of similar magnitude
and lead to the following two conclusions shared by all
the publications' authors:

(1) Product acceptability is dependent upon trade-
off between area cost and module efficiency.
Only by achieving high module efficiencies
can high module area cost fall within an
acceptable range.

(2) There are three competing module options
being considered with no clear-cut, most-
successful contender identified. The three
module options are concentrator systems,
crystalline silicon flat-plate systems, and
tandem-junction thin-film systems.

To compete successfully, silicon sheet must be
capable of achieving both the performance and cost
criteria presented in Table 12. Performance is
a function of material perfection.

A conversion efficiency of 20% has been reported
for crystalline silicon solar cells fabricated from highly
perfect FZ silicon wafers, and > 18% efficiency has
been reported for devices fabricated from Cz wafers.
Yet, for these ingot-based sheet production processes,
the required price goals are currently unattainable
because of the materials utilization inefficiency involved

in wafering.

Qf the existing ribbon growth processes, only one
seems to have the potential to achieve both the high-
efficiency performance and cost targets demanded by
the utilities. With reassuring repeatability, dendritic-web
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Table 12. Price Allocation Guidelines for Ingot and Non-Ingot Technologies (in 1975 dollars)

Ingot Technology

Efficiency 1978 1980 1982 1984 1986

Encapsulated Cell 11.5 13 14 15 16.9

Module 8.6 10.1 11.2 12.8 14.4

Estimate Guidelines Goals

Silicon $/kg

$/Wp

Sheet (value $/m 2 sheet

added) $/Wp

Cells (value $/m 2 cell

added) $/Wp

Encapsulation $/m 2 module

materials $/Wp

Module (value $/m 2 module

added) $/Wp

65 60 40 17 10

1.42 1.10 0.47 0.19 0.095

214 129 90 54 18

2.33 1.24 0.72 0.38 0.112

200 120 52 30 22

1.74 0.92 0.37 0.20 0.130

30 25 15 10 8
0,35 0,25 0.13 0.08 0.055

100 50 34 20 15.5

1.16 0.49 0.31 0.15 0.108

Total $/Wp 7.00 4,00 2.00 1.00 0.50

Non-Ingot Technology

Efficiency 1978 1980 1982 1984 1 986

Encapsulated Cell -- 11 12 13 14

Module -- 9.9 10.8 11.8 12.9

Estimate Guidelines Goals

Silicon $/kg 65 60 40 17 10

$/Wp -- 0.40 0.20 0.07 0.030

Sheet (value $/m 2 sheet -- 1 54 98 55 17.4

added) $/Wp -- 1.75 0.91 0,45 0.131

Cells (value $/m 2 cell 200 120 52 30 22

added) $/Wp -- 1.09 0.43 0.23 0.157

Encapsulation $/m 2 module 30 25 15 10 8

materials $/Wp -- 0.25 0.14 0.08 0.062

Module (value $/m 2 module 100 50 34 20 15.5

added) $/Wp -- 0.51 0.32 0.17 0.120

Total $/Wp 7.00 4.00 2.00 1.00 050
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Table 13. Status of Silicon Ingot Growth and Wafering

Growth Technology Present Status

Czochralski Ingots, 20-cm-diameter, being
grown at 5 cm/h (3.7 kg/h),
versus 7.5-.cm-diameter at
5 cm/h in 1975

Heat exchange method

Semix process

Fully automated ingot growth
machine in production (versus
fully manual machine in 1975)

Ingots 33 x 33 x 15 cm being
grown, then cut into 10 x 10 x
15 cm bars

In full commercial production,
but details are unavailable

Wafering Technology Present Status

Czochralski Ingots, 20-cm-diameter, sliced
with ID saw at 8 min/wafer

Heat exchange method

Cycle time to next cut: 10 s

Fixed-Abrasive Sawing
Technique being developed
under funding by DARPA

48 wafers per inch (14 mil
thick) being routinely cut

64 wafers per inch
(10 to 11 mil) wafering
demonstrated

silicon has been used to produce solar cells with efficien-
cies greater than 16%. There is confidence that with
improvement in both growth and device processes, cell
performance also can be improved even in the pro-
duction environment. For the growth process,
uncertainty lies in the ability to achieve the cost goals
(see Reference 4). The single most important cost
driver for the dendritic-web process is the area

throughput rate. Various cost analyses set the thresh-

old to attain the $0.70/Wp (1980 dollars) module price
goal at an area growth rate of 13 to 25 cm2/min (see
Reference 1) as compared to the presently demon-
strated capability of about 6 cm2/min for the growth of
long ribbons. The best demonstrated weekly through-
put observed at Westinghouse for a single machine in
a quasi-pilot-production mode is about 50,000 cm2, as

compared to the Westinghouse internal goal of
180,000 cm2.

Whisnant (Reference 106) also concludes that
attainment of dendritic web's considerable potential for

market contention will be determined by achievement
of 15 to 20 cm2/min growth rates with module efficien-
cies near 15%. DeMeo and Taylor (see Reference 4)
point out that efficiency and cost goals may not be
mutually attainable, and that "the advanced processes
invariably trade off efficiency for lower cost of produc-
tion." They urge parallel research to ensure a threefold
achievement: (1) continuous operation, (2) a suffi-

ciently high ribbon or sheet growth rate, and (3) a high
yield of cells with target efficiencies.

The Silicon Sheet Task concluded:

(1) Single-crystal ingot technology easily can
achieve the required efficiencies. However,
ingot technology cannot become a contender
unless there is a breakthrough in wafering
technology, which is unlikely without
additional funding.

(2) Of the existing ribbon technologies, only one
(dendritic-web ribbon) has the potential to
achieve the utilities-demanded efficiencies, but
even this ribbon technology will require process
improvement. The present product is too
imperfect to achieve the efficiencies of Cz
wafers processed today. At present, the
dendritic-web process does not achieve the

necessary throughput rates to meet the cost
goals. Technology development, in the form of
increased linear pull speeds or ribbon widths to

yield larger area growth rates, is needed to
achieve the throughput goals. Increases in area
growth rates, however, may result in reduced
cell efficiency because of increased defect
density or reduced yield caused by increased
stress and strain (see Chalmer's "speed limit" in
Workshop on High-Speed Growth and Charac-
terization of Crystals for Solar Cells, Appendix B,
No. 2.). Numerous technical problems remain to
be solved to overcome successfully the barriers
to higher growth rates. These problems include
achievement of control of the processes of heat
flow in the growing ribbon, thermal stress and
strain generation, impurity redistribution, and
interface stability in a thermally and chemically
dynamic environment. Each of these, by itself, is
a challenging research problem that requires not
only the resources of appropriate research tools,

money, and people, but also the time to estab-
lish a useful understanding of the operating
phenomena.

(3) Concentrators and thin films, as contending
technologies, are not without serious prob-
lems themselves. Because they are less
mature technologies, they also may hold
unexpected pitfalls. Thus, crystalline silicon
technology may yet find a permanent place in
large-scale terrestrial PV applications; how-
ever, it is not yet clear which crystalline silicon
technology will be most successful.
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Table 14. Present Status of Silicon Ribbon Technology*

Growth Data

Linear
Growth

Thickness, Width, Length, Rate, Area Growth Rate,
Technology /_m cm m cr'ntmin cm2/min

EFG 150-300 45 (nonagon 7 maximum 2.2 100
circumference)

Dendritic web 150 nominal 6.7 maximum 11 maximum 1.7 sustained 7 (meters of length)
8.5 (1 m length)

LASS 500-1500 15 maximum 46 maximum 20-40 typical 600 typical maximum

ESR 250-325 5.5 Limited by 1.9-2.5 14 maximum
filament length

RTR 150-250 5-10 0.15-0.3 2.5-3.8 13-38

Cell and Module Efficiencies

Cell Efficiency,
Technology AM1 Module Efficiency

EFG 5 x 10 cm:

(commercialized) 12-13 % average
14.7-14.8% peak

Dendritic web 1 cm 2

17.3% maximum

25 cm2:
16.4% maximum

14.0% average

LASS 4 x 4 cm:
12.0% maximum

10.5% average

ESR 5 x 10 cm:
12.6 % (average of
40 cells)

RTR Information not
available

16 x 35.5 in.: little over 11%
4x6ft: 10-11%

16x48in.: 14% maximum

No modules made

Information not available

Information not available

* There is considerable variation in ribbon quality and cost for these technologies.
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APPENDIX A

Modeling Sheet Price Estimation Guidelines

At the beginning of the FSA Project, the Project Analysis and Integra-

tion Area (PA&I) established price goals for the power developed through

flat-plate solar arrays in terms of _/Wp and $/M 2 of module in order to meet

the Project objective of developing the technology to make photovoltaic (PV)

energy an economically viable alternative energy source. The price goals

were, in turn, translated by the PA&I into various technology related goals in

terms of throughput, efficiency, material consumption, and yields appropriate

for each process step. The process steps themselves depend upon various

alternative technologies for material processing, such as ingot and ribbon

technologies. Various options were explored for each of these alternatives.

The price allocation guidelines were established for each of the options

developed.

Economic analysis was used as a tool for identifying the primary cost

drivers so that the developmental efforts through innovative ideas may be

concentrated in those areas in order to meet the price goals. In-house

studies were conducted to guide the developmental efforts.

In order to achieve the goal, a certain production rate and sheet

quality are required. Production parameters such as ribbon width, growth

rate, run length time, ribbons per furnace, production yield, and duty cycle

are process dependent. Annual Manufacturing Cost (AMC) of producing certain

quantity of silicon sheet per year is expressed as a function of five cost

parameters by the Interim Price Estimation Guidelines (IPEG). These

parameters are equipment cost, space required, direct labor, materials and

supplies, and utilities.

The process add-on price in terms of _/m 2 is obtained by the ratio of

AMC (S/year) to the quantity of sheet produced per year (m2/year). A program

named Sensitivity Analysis using IPEG (SAIPEG) was developed with special

codes specific to each process for computing various parameters, as well as

for computing yearly throughput based on production parameters. The SAIPEG

program was very helpful in understanding the relative importance of cost

parameters, and add-on price sensitivity to each of them, so that developmental

efforts could be directed appropriately. This analysis would give an estimate

of how much throughput is essential to achieve the price goal.

One of the studies was "Cost of Czochralski Wafers as a Function of

Diameter" (Reference A-l). Results indicate a small but continuous decrease

in sheet cost with increasin_ ingot size. Sheet costs including silicon are

projected to be 350 to _60/m z (1980 dollars) depending upon techniques used.

Another related study (Reference A-2) discusses the (FSA) Flat-Plate

Solar Array Project perspective of high-speed growth of silicon crystals.

The cost of materials dominate the cost of PV modules; hence, the PV

technology has to be based on unique material conserving sheet growth

processes. The direction of development of sheet technologies pursued by the

FSA Project had been toward minimizing material use while achieving maximum

throughput and higher sheet quality within the bounds of low-cost requirements.

Figure A-I shows add-on price sensitivity to various cost parameters of the

dendritic-web growth process.
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Similar studies performed for the price estimates for production of

wafers from silicon ingots are discussed in detail in References A-3 and A-4.

Most solar cells, however, are produced from wafers sliced from crystalline

silicon ingots. The cost of the slicing process is a major part of the cost

of producing silicon sheet. The less expensive wafering technologies are

therefore, of great importance in reducing the cost of PV modules. The add-on

price estimates for three wafering technologies, namely, inside diameter (ID)

sawing, (MBS) sawing, and fixed abrasive slicing technique (FAST) are

discussed in these references. The analysis indicated that both ID and FAST

technologies were expected to achieve the price allocation provided the

assumptions implied in the input data are realized. The MBS technology

projections, however, indicated that its progress would not be sufficient to

achieve the allocated price goal before 1986.

Trade-offs in ingot shaping and price of solar PV modules were studied

(Re[erence A-5). Growth of round ingots is cost effective for sheets, but

leaves unused space when round cells are packed into a module. This reduces

the packing efficiency from 95% for square cells to about 78%. Shaping these

ingots into squares with regrowth of cut silicon improves the packing factor,

but increases growth cost. It is shown that shaping results in cost savings

of up to 21% for a 15-cm-diameter ingot.

Sensitivity analysis study results for the add-on price estimate for the

edge-defined film-fed growth (EFG) process are described in detail in

Reference A-6. The study indicated that direct labor was the primary cost

driver, and a representative sample of the sensitivity analysis results is

shown in Figure A-2. It represents the add-on price sensitivity of the EFG

A-2



process to the direct labor cost. The study results indicated that the add-on
price goal for the EFGprocess can be met if all the assumptions implied in
the input data can be achieved.

Similarly, sensitivity analysis results for the add-on price estimate for
the web process are described in detail in Reference A-7. The direct labor
cost was also identified to be the primary cost driver for the web process.
A representative sample of add-on price sensitivity to silicon price is shown
in Figure A-3.
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APPENDIX B

Workshop Summaries

I. WAFERING WORKSHOP, JUNE 1981

The ability of any ingot-based PV technology to compete in the future

marketplace will depend upon the development of economical silicon- efficient

wafering methods. The Low-Cost Solar Array Project at the Jet Propulsion

Laboratory has supported the development of ingot wafering technology since
1975.

By the middle of 1980, it was clear that further technical breakthroughs

in the wafering processes would be required to achieve the economic goals set

by the LSA Project. As a first step toward giving the program new energy, a

workshop on the wafering of silicon and related topics was planned.

The Workshop on ingot wafering was held on June 8-10, 1981, at the

Pointe, Phoenix, Arizona, under the sponsorship of the Low-Cost Solar Array

JPL Project. Objectives were to clarify and define the state of the art in

silicon wafering, to solicit and explore innovative ideas in wafering, and to

stimulate a productive exchange of technology within the slicing community.

The approach was to hold an intensive Workshop with invited and submitted

papers on the various aspects of ingot wafering, to invite acknowledged

experts in the field who would lend perspective to the subject as well as

their technical expertise, and to provide an atmosphere that would give ample

opportunity for discussion.

More than 80 specialists representing five countries came to Phoenix to

participate in an information-packed 3-day meeting. Often, for the first

time, wafering empiricists were exposed to the theories underlying their

wafering processes and theoreticians were given an accurate perspective of

sawing as a business. Martin Wolf observed that the Workshop "fulfilled the

task of bringing the diverse workers in the field to a common level of

up-to-date information on all aspects of this area, making them aware of the

accomplishments, the unknowns, and needs in setting the stage for further

fruitful work as well as further information exchange." In fact, it seemed

that everyone went home with new contacts and new ideas based on a better

technical foundation. We saw new partnerships forming for research studies.

We identified as important overlooked aspects of wafering technology for which

R&D support is clearly needed. Based on the work presented at the conference

and contained in these proceedings, we were able to understand better the

potential of the technology.

The Workshop consisted of seven sessions covering all aspects of ingot

wafering, including fixed- and free-abrasive sawing, wire, ID, and multiblade

sawing, materials, mechanisms, characterization, innovative concepts, and

economics. The Workshop Proceedings were published by the Project as

JPL Publication 82-9, JPL Document 5101-187, Jet Propulsion Laboratory,

Pasadena, California, February I, 1982.

II. RESEARCH FORUM ON THE HIGH-SPEED GROWTH AND CHARACTERIZATION

OF CRYSTALS FOR SOLAR CELLS, JULY 1983

The Research Forum on High-Speed Growth and Characterization of Crystals

for Solar Cells was held at the Sandpiper Bay Hotel in Port St. Lucie, Florida,

July 25-27, 1983. There were 68 participants, and 35 technical presentations

B-I



were made. Meeting attendance was broad-based, as evidenced by the source

breakdown of papers: 16 from industrial laboratories, 13 from universities,

and 6 from U.S. Government laboratories. The Forum was sponsored by the

Flat-Plate Solar Array Project of the Jet Propulsion Laboratory.

The objectives of the Forum were to address theoretical and experimental

phenomena, applications, characterization and all problem areas related to

high-speed crystal growth, to define future areas of research, and to provide

the opportunity for unrestricted technology exchange among those attending.

The format used to achieve these objectives involved eight intensive sessions,

consisting of four to five papers each, during the 3-day period_ Time for

each paper was equally divided between presentation and discussion periods.

This format provided a successful exchange of ideas.

The Proceedings document (JPL Publication 84-23, JPL Document 5101-238,

Jet Propulsion Laboratory, April 15, 1984) includes each speaker's manuscript

and a transcript of the discussion period following each paper. Each of the

manuscripts was printed, without changes, as received from the author.

III. WORKSHOP ON CRYSTAL GROWTH FOR HIGH-EFFICIENCY

SILICON SOLAR CELLS

The Crystal Growth for High-Efficiency Silicon Solar Cells Workshop was

held in San Diego, California, on December 3 and 4, 1984. Representatives

from industrial laboratories, universities, and U.S. Government laboratories

participated in the meeting and contributed to research planning activities.

The Workshop was sponsored by the Flat-Plate Solar Array Project of the Jet

Propulsion Laboratory.

The objectives of the Workshop were to define the requirements for

silicon sheet suitable for processing into high-efficiency solar cells, to

review the state of the art of silicon crystal growth technology (emphasizing

the growth-related phonemena that limited device performance), and to identify

the future research necessary to produce silicon sheet suitable for fabrication

into high-efficiency solar cells. The schedule for this topical meeting

divided each speaker's time equally between a formal presentation and a

discussion period. In the final session, a panel of experts opened a general

discussion of the future research activities necessary to achieve the growth

of high-quality silicon crystals. The format for the meeting successfully

provided the opportunity for unrestricted technology exchange among those

attending.

This Proceedings document (JPL Publication 85-59, JPL Document 5101-272,

Jet Propulsion Laboratory, August 15, 1985) includes speaker's presentation

material and a transcript of the discussion period following each paper. A

transcript of the entire panel and general discussion is also included.
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APPENDIXD

Acquisition of References

Most of the references used in this report fall into one of four generic types: (1) JPL published reports,
(2) reports prepared for JPL by an outside contractor, ('3) articles in the proceedings of professional meetings, and
(4) articles in professional journals.

JPL PUBLISHED REPORTS

These reports nearly always contain an FSA Project document number of the form 51 01-xxx, and many also
contain a JPL Publication number (such as JPL Publication 83-52) and/or a Federal Government sponsor number in
the form of DOE/JPL-1 01 2-xx. Only those reports contain a JPL Publication number can be easily obtained from JPL.
These can be obtained from:

Jet Propulsion Laboratory
Documentation and Materiel Division
4800 Oak Grove Dr.
Pasadena, CA 91109

JPL reports containing the Federal Government sponsor number DOE/JPL-1 012-xx can be obtained from:

U.S. Department of Commerce
National Technical Information Service

5285 Port Royal Rd
Springfield, VA 22161

or U.S Department of Energy
Technical Information Center

Publication Request Section
P.O. Box 62

Oak Ridge, TN 37831

JPL reports without a JPL Publication number or Federal Government sponsor number are internal JPL reports.
They are sometimes available from the Documentation and Materiel Division, which determines their releasibility with
the author's organization, assuming copies are still in print.

JPL CONTRACTOR REPORTS

These reports are available from the National Technical Information Service (NTIS) at the Springfield, Virginia,
address given above, using the Federal Government sponsor number (DOE/JPL 9xxxxx-xx) associated with the
reference. They are generally not available from either JPL or the contractor who prepared the report.
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APPENDIXE

Glossary

AGILE

AM

AR

ASEC

ASU

CAST

CFH

CLF

CNTD

CSI

CVD

Cz

DARPA

DOE

DTM

EFG

EMC

EPI

epi

EPRI

ESP

ESR

FAST

FF

FSA

FZ

GE

HEM

IBM

ID

IPEG

I-V

JPL

Jsc

KBI

LASS

LD

Automatic Grower Logic

air mass

antireflective

Applied Solar Energy Corp.

Arizona State University

capillary action shaping technique

crucible-free horizontal (ribbon growth)

continuous liquid feed

Controlled Nucleation Thermal Deposition

Crystal Systems, Inc.

chemical vapor deposition

Czochralski

Defense Advanced Research Projects

Agency

U.S. Department of Energy

dendrite thickness monitor

edge-defined film-fed growth

Energy Materials Corp.

Eagie-Picher Industries

epitaxial growth

Electric Power Research Institute

edge-supported pulling

edge-stabilized ribbon

fixed-abrasive slicing technique

fill factor (of I-V curve)

Flat-Plate Solar Array (Project)

float-zone, float zoning

General Electric Company

heat exchange method

International Business Machines Corp.

internal diameter

Improved Price Estimation Guidelines

current-voltage

Jet Propulsion Laboratory

short-circuit current density (mA/cm2)

Kawecki-Berylco, Inc.

low-angle silicon sheet

minority carrier diffusion lengths

LPE

LYp

MBS

MIT

MOS

MPa

MSEC

MWS

NASA

OCLI

OCT

PECAN

PV

R&D

RF

RFP

RGA

RS

RTR

SAMICS

SCIM

SEM

SERI

SIMS

SOC

SRI

STC

TD

TEM

TR

UCLA

UCP

UIC

UMG

UMR

Voc

liquid-phase epitaxy

lower yield point

multiple-blade slurry (sawing)

Massachusetts Institute of Technology

metal-oxide-semiconductor

megapascals

Mobil Solar Energy Corp.

multiple-wire slurry (sawing)

National Aeronautics and Space
Administration

Optical Coating Laboratory, Inc.

oscillating crucible technique

Photovoltaic Energy Conversion Analysis
(program)

photovoltaic(s)

research and development

radio frequency

Request for Proposal

residual gas analyzer

resolved shear

ribbon-to-ribbon

Solar Array Manufacturing Industry
Costing Standards

Silicon Coating by Inverted Meniscus

scanning electron microscope

Solar Energy Research Institute

secondary ion mass spectroscopy

silicon-on-ceramic

Stanford Research Institute International

Silicon Technology Corp.

technology development

transmission electron microscopy

technology readiness

University of California, Los Angeles

Ubiquitous Crystallization Process

University of Illinois at Chicago

upgraded metallurgical grade

University of Missouri-Rolla

open-circuit voltage
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More Technology Advancements

Dendritic web silicon ribbons are grown to solar-ceil

thickness, Progress is shown by experimental ribbons

grown in 1976 and 1978 and a ribbon grown in a
Westinghouse Electric Corporation pilot plant.

\ j'

The edge-defined film-fed growth silicon ribbons are

grown to solar-cell thickness. A DOE/FSA-sponsored

research ribbon grown in 1976 is shown next to a

nine-sided ribbon grown in a Mobil Solar Energy

Corporation funded configuration

1980

INGOT GROWN
USING SILICON MELT

REPLENISHMENT

1968-73

Czochralski silicon crystals as grown are

sawed into thin circular wafers, (Support for
this effort was completed in I981.)

SEAL

• GASKET

GLASSISTRUCTURALI

_,1=,- SPACER

POTTANT

_1__ SOLAR CELLS-

INTERCONNECTED

SPACER

POTTANT

BACK COVER FILM

{COMPOSITE)

Typical superstrate module design is shown with the
electricafly interconnected solar cells embedded in a

laminate that is structurally supported by glass.

Materials and processes suitable for mass production

have been developed using this laminated design.

Prototype modules have passed UL 790 Class A

burning brand tests which are more severe than
this spread of flame test.

A 15.2% efficiency prototype module (21 x 36 in.)

was made by Spire Corp. using float-zone silfcon

wafers. Recently, similarly efficient modules were
fabricated from Czochralski silicon wafers.



Photovoltaic Applications
1975

U.S. Coast Guard buoy

with photovoltaic-powered

na riga tional light.

Later...

Pho to voltaic-pc wered corrosion protection

of underground pipes and wells.

House in Carfisle, Massachusetts with a 7.3-kW

photovoltaic rooftop array. Excess photovoltaic-

generated power is sold to the utility, Power is
automaticafly suppfied by the utifity as needed.

1985

A 28-kW array of solar cells for crop irrigation

during summer, and crop drying during winter

(a DOE/University of Nebraska cooperative project).

1.2 MW of photovoltaic peaking-power generation

capacity for the Sacramento Municipal Utifity District
(The 8 _ !8 ft pane/s are mounted on a north-south

axis for trac'king the sun,)


